refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 12291 results
Sort by

Filters

Technology

Platform

accession-icon GSE7656
E.coli GeneChip study of E.coli responses to osmotic and heat stresses
  • organism-icon Escherichia coli
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

We probed the mechanism of cross-regulation of osmotic and heat stress responses by characterizing the effects of high osmolarity (0.3M vs. 0.0M NaCl) and temperature (43oC vs. 30oC) on the transcriptome of Escherichia coli K12 using E. coli Genome 2 Array (Affymetrix, Inc.). Independent array hybridizations were carried out for 3 biological replicates (independent cultures). Total RNA was extracted using a hot phenol-chloroform method. cDNA synthesis, fragmentation and labeling, and washing and scanning of E. coli GeneChip Arrays were performed according to the instructions of the manufacturer (Affymetrix Technical Manual, Affymetrix, Inc., USA). Labeled cDNA was hybridized to E. coli Genome 2 Array (Affymetrix, Inc.). Independent array hybridizations were carried out for 3 biological replicates (independent cultures) of each condition. A number of genes in the SoxRS and OxyR oxidative stress regulons were up-regulated by high osmolarity, high temperature, and/or by the combination of both stresses. This result could account for cross-protection of osmotic stress against oxidative stress. The trehalose biosynthetic genes were induced by both stresses, in accord with the proposed protective role of this disaccharide against thermal and oxidative damage.

Publication Title

Genome-wide transcriptional responses of Escherichia coli K-12 to continuous osmotic and heat stresses.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE48459
Sarcoptes scabiei Mites Modulate Gene Expression In Human Skin Equivalents
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The purpose of this study was to identify genes in keratinocytes and fibroblasts in human skin equivalents that changed expression in response to the burrowing of live scabies mites.

Publication Title

Sarcoptes scabiei mites modulate gene expression in human skin equivalents.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE28672
Son Maintains Accurate Splicing of Pre-mRNAs Encoding Chromatin Modifiers
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

Exon and expression analysis of HeLa cells after knockdown of SON

Publication Title

Son maintains accurate splicing for a subset of human pre-mRNAs.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE142102
Whole genome expression profiling of triple negative breast tumors in 226 African American women
  • organism-icon Homo sapiens
  • sample-icon 226 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

Purpose: Black/African American (AA) women are twice as likely to be diagnosed with triple negative breast cancer (TNBC) compared to whites, an aggressive breast cancer subtype associated with poor prognosis. There are no routinely used targeted clinical therapies for TNBC; thus there is a clear need to identify prognostic markers and potential therapeutic targets. Methods: We evaluated expression of 27,016 genes in 155 treatment-naïve TN tumors from AA women in Detroit. Associations with survival were evaluated using Cox proportional hazards models adjusting for stage and age at diagnosis, and p-values were corrected using a false discovery rate. Our validation sample consisted of 158 TN tumors (54 AA) from The Cancer Genome Atlas (TCGA). Meta-analyses were performed to obtain summary estimates by combining TCGA and Detroit AA cohort results. Results: In the Detroit AA cohort, CLCA2 [Hazard ratio (HR)=1.56, 95% confidence interval (CI) 1.31-1.86, nominal p=5.1x10-7, FDR p=0.014], SPIC [HR=1.47, 95%CI 1.26-1.73, nominal p=1.8x10-6, FDR p=0.022], and MIR4311 [HR=1.57, 95% CI 1.31-1.92, nominal p=2.5x10-5, FDR p=0.022] expression were associated with overall survival. Further adjustment for treatment and breast cancer specific survival analysis did not substantially alter effect estimates. Meta-analysis with TCGA data showed that CLCA2 and SPIC were associated with overall survival for TNBC among AA women. Conclusions: We identified three potential prognostic markers for TNBC in AA women, for which SPIC may be an AA-specific prognostic marker.

Publication Title

CLCA2 expression is associated with survival among African American women with triple negative breast cancer.

Sample Metadata Fields

Age, Treatment, Race

View Samples
accession-icon GSE73439
Changes in gene expression and splicing associated with pregnancy, labor and regions of human adipose tissue.
  • organism-icon Homo sapiens
  • sample-icon 203 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

This is the expression dataset for two studies: 1) Characterization of visceral and subcutaneous adipose tissue transcriptome and biological pathways in pregnant and non-pregnant women: Evidence for pregnancy-related regional-specific differences in adipose tissue and 2) Characterization of visceral and subcutaneous adipose tissue transcriptome in pregnant women with and without spontaneous labor at term: Implication of alternative splicing in the metabolic adaptations of adipose tissue to parturition.

Publication Title

Characterization of visceral and subcutaneous adipose tissue transcriptome in pregnant women with and without spontaneous labor at term: implication of alternative splicing in the metabolic adaptations of adipose tissue to parturition.

Sample Metadata Fields

Specimen part, Disease stage, Subject

View Samples
accession-icon GSE68963
Genetic regulation of barley gene expression in response to the powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh)
  • organism-icon Hordeum vulgare
  • sample-icon 168 Downloadable Samples
  • Technology Badge Icon Affymetrix Barley Genome Array (barley1)

Description

Expression analysis was performed on total RNA from the Q21861 and SM89010 barley lines, and 75 derived doubled haploid progeny, with CI 16137 included as an internal Mla1 allele control. Samples were blocked by time-point and completely randomized within each block. For each sample, seven day old seedlings were inoculated with Blumeria graminis f. sp. hordei (Bgh) isolate 5874 (AVRa1, AVRa6, AVRa12), and first leaves were collected at 16 and 32 hours after inoculation (HAI). ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Roger Wise. The equivalent experiment is BB96 at PLEXdb.]

Publication Title

No associated publication

Sample Metadata Fields

Age, Specimen part, Time

View Samples
accession-icon GSE66913
Grape_Bud_Dormancy
  • organism-icon Vitis riparia, Vitis hybrid cultivar
  • sample-icon 167 Downloadable Samples
  • Technology Badge Icon Affymetrix Vitis vinifera (Grape) Genome Array (vitisvinifera)

Description

Bud endodormancy induction response of two genotypes (Seyval a hybrid white wine grape and V. riparia, PI588259 a native north american species) was compared under long and short photoperiod. Three separate replicates (5 plants/replicate) were treated in each of 2 separate years (2007 and 2008) to generate paradormant (LD) and same aged endodormancy-induced (SD) buds for transcriptomic, proteomic and metabolomic analysis. Potted, spur-pruned two to six-year-old vines were removed from cold storage (Seyval 3-19-07, 3/18/08; V. riparia 3/26/07, 3/24/08) and grown under a LD (15 h) at 25/20 + 3C day/night temperatures (D/N). When vines reached 12-15 nodes they were randomized into groups for differential photoperiod treatments. On 4/30/07 and 4/28/08 LD and SD (13 h) treatments were imposed with automated photoperiod system (VRE Greenhouse Systems). Temperatures were maintained at 25/20 + 3C D/N. Three replications (5 vines/replication) were harvested between 5/07-6/07 and then again in 5/08-6/08. At 1, 3, 7, 14, 21, 28 and 42 days of differential photoperiod treatment, buds were harvested from nodes 3 to 12 (from the base of the shoot) of each separate replicate, immediately frozen in liquid nitrogen, and placed at -80C for future RNA, protein and metabolite extraction. These time points encompass early reversible phases as well as key time points during transition to irreversible endodormancy development. After photoperiod treatments and bud harvests, all pruned vines were returned to LD and monitored for bud endodormancy. The endodormant vines were identified after 28 days and moved to cold storage. The nondormant vines were allowed to grow again and induced into dormancy at a later date. Acknowledgement:This study was funded by NSF Grant DBI0604755 and funds from the South Dakota Agriculture Experiment Station. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Anne Fennell. The equivalent experiment is VV18 at PLEXdb.]

Publication Title

Short day transcriptomic programming during induction of dormancy in grapevine.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE20416
Genetic regulation of gene expression of barley in response to stem rust (Pgt isolate TTKS)
  • organism-icon Hordeum vulgare
  • sample-icon 166 Downloadable Samples
  • Technology Badge Icon Affymetrix Barley Genome Array (barley1)

Description

The QxSM doubled-haploid mapping population was generated from a single Q21861 x SM89010 F1 plant (Borovkova et al. 1995; Steffenson et al. 1995). Four flats (each flat contained 75 DH lines + 4 replicates of each parent = 81 cones/flat) were grown in a completely randomized design at the ARS Cereal Disease Lab, University of Minnesota, St. Paul. The four flats were divided into two replicates of two flats each. Nine days after sowing, one flat of each replicate was inoculated (INOC) with TTKS urediniospores were suspended in Soltrol oil with an inoculum weight of 0.25 mg per flat and the other was mock-inoculated (MOCK). Each (MOCK and INOC) replicate was incubated in its own dew chamber overnight. After inoculation, replicates were placed in separate mist chambers for 16 hours in the dark, followed by lights for 5 hours, and then moved to the greenhouse for 2 hours. The growth stage of barley was first leaf unfolded (PO:0007094) and five seedlings were harvested and placed in liquid nitrogen for each line in the population within a 1.5 hour period at 24 hours after inoculation (hai). ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Roger P. Wise. The equivalent experiment is BB64 at PLEXdb.]

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE33392
Transcription profiling of barley plants containing variants of Mla1 and Mla6 powdery mildew resistance genes
  • organism-icon Hordeum vulgare
  • sample-icon 144 Downloadable Samples
  • Technology Badge Icon Affymetrix Barley Genome Array (barley1)

Description

A split-split-plot design with 144 experimental units (3 replications x 4 genotypes x 6 time points x 2 treatment types) was used to profile barley plants containing variants of Mla1 and Mla6 powdery mildew resistance genes in response to inoculation with the Blumeria graminis f. sp. hordei (Bgh) isolates 5874 (AvrMla1, AvrMla6). Barley leaves were harvested from inoculated and non-inoculated plants at 6 time points (0,8,16,20,24 and 32 hrs) after Bgh inoculation. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Rico Caldo. The equivalent experiment is BB10 at PLEXdb.]

Publication Title

Blufensin1 negatively impacts basal defense in response to barley powdery mildew.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE15904
Genetic Heterogeneity in Mouse Mammary Tumors
  • organism-icon Mus musculus
  • sample-icon 126 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Human cancers result from a complex series of genetic alterations resulting in heterogeneous disease states. Dissecting this heterogeneity is critical for understanding underlying mechanisms and providing opportunities for therapeutics matching the complexity. Mouse models of cancer have generally been employed to reduce this complexity and focus on the role of single genes. Nevertheless, our analysis of tumors arising in the MMTV-Myc model of mammary carcinogenesis reveals substantial heterogeneity, seen in both histological and expression phenotypes. One contribution to this heterogeneity is the substantial frequency of activating Ras mutations, the frequency of which can be changed by alterations in Myc. Additionally, we show that these Myc-induced mammary tumors exhibit even greater heterogeneity, revealed by distinct histological subtypes as well as distinct patterns of gene expression, than many other mouse models of tumorigenesis. Two of the major histological subtypes are characterized by differential patterns of cellular signaling pathways, including B-Catenin and Stat3 activities. We also demonstrate the predictive nature of this approach though examining metastatic potential. Together, these data reveal that a combination of histological and genomic analyses can uncover substantial heterogeneity in mammary tumor formation and therefore highlight aspects of tumor phenotype not evident in the population as a whole.

Publication Title

Genetic heterogeneity of Myc-induced mammary tumors reflecting diverse phenotypes including metastatic potential.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact