refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 15126 results
Sort by

Filters

Technology

Platform

accession-icon GSE49577
Chemotherapy induced dynamic gene expression changes in vivo are prognostic in ovarian cancer
  • organism-icon Homo sapiens
  • sample-icon 101 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Carboplatin and paclitaxel are the most widely prescribed chemotherapeutic agents for ovarian cancer. Not all patients respond to treatment, so there is a need for biomarkers that reliably predict resistance in ovarian tumors. Expression of such biomarkers may be dynamically controlled. Gene expression was assessed for a period of 14 days after treatment with carboplatin or combined carboplatin-paclitaxel in xenografts from two ovarian cancer models: chemosensitive serous adenocarcinoma derived OV1002 and slow growing, chemoresistant HOX424 of clear cell origin. Tumour volume reduction was observed in both cell lines post treatment, with a more prominent effect in OV1002, which subsided in late time points. In OV1002, hierarchical clustering classified differentially expressed genes into four time-related patterns, upregulated and downregulated groups for each early and late expressed genes. Upregulated genes were involved in DNA repair, cell cycle and apoptosis, while downregulated groups were involved in oxygen consuming metabolic processes and apoptosis control. Carboplatin-paclitaxel treatment triggered a more comprehensive response. HOX424 responded only to the combined treatment, while the observed reduction in tumour growth was limited. Several apoptosis and cell cycle genes were upregulated, while Wnt signaling was downregulated in the exclusively late expression pattern observed in this cell line. Late downregulated gene groups post carboplatin-taxane treatment were capable of predicting overall survival in two independent clinical datesets. Pathways overrepresented in these clusters were also predictive of outcome. This longitudinal gene expression study may help characterization of chemotherapy response, identification of resistance biomarkers and guiding timing of biopsies.

Publication Title

Chemotherapy-induced dynamic gene expression changes in vivo are prognostic in ovarian cancer.

Sample Metadata Fields

Disease, Disease stage, Time

View Samples
accession-icon GSE11465
Myasthenia gravis model: gene expression profile in diaphragm, extensor digitorum longus and extraocular muscles of rats
  • organism-icon Rattus norvegicus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

gene expression profile in diaphragm (DIA), extensor digitorum longus (EDL) and extraocular (EOM) muscles of rats with actively induced experimentally acquired MG (EAMG) using Affymetrix rat RAE230 gene chip.

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE36478
Gene Expression Levels in PiZ mice Compared to Wild-type (Wt)C57Bl/6
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Individuals expressing alpha-1-antitrypsin mutant Z protein accumulate misfolded, mutant protein in the liver and are at risk for liver diseases including cirrhosis and hepatocellular carcinoma. Transgenic PiZ mice, a model for this liver disease, display similar pathologies to humans, including inflammation, increases in proliferation, autophagy and apoptosis, accumulation of globules and develop fibrosis and hepatocellular carcinoma with age. Microarrays were used to compare the gene expressions of PiZ mice to wild-type mice in order to identify the pathways that are altered in this disorder.

Publication Title

Oxidative stress contributes to liver damage in a murine model of alpha-1-antitrypsin deficiency.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE78929
Transcriptomic analysis reveals abnormal repair and remodeling in survivors of critical illness with sustained muscle weakness
  • organism-icon Homo sapiens
  • sample-icon 32 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

ICU acquired weakness (ICUAW) is a complication of critical illness characterized by structural and functional impairment of skeletal muscle that may persist for years after ICU discharge with many survivors developing protracted courses with few regaining functional independence. Elucidating molecular mechanisms underscoring sustained ICUAW is crucial to understanding outcomes linked to different morbidity trajectories as well as for the development of novel therapies. Quadriceps muscle biopsies and functional measures of muscle strength and mass were obtained at 7 days and 6 months post-ICU discharge from a cohort of ICUAW patients. Unsupervised co-expression network analysis of transcriptomic profiles identified discrete modules of co-expressed genes associated with the degree of muscle weakness and atrophy in early and sustained ICUAW. Modules were enriched for genes involved in skeletal muscle regeneration and extracellular matrix deposition. Collagen deposition in persistent ICUAW was confirmed by histochemical stain. Modules were further validated in an independent cohort of critically ill patients with sepsis-induced multi-organ failure and a porcine model of ICUAW, demonstrating disease-associated conservation across species and peripheral muscle type. Our findings provide a pathomolecular basis for sustained ICUAW, implicating aberrant expression of distinct skeletal muscle structural and regenerative genes in early and persistent ICUAW.

Publication Title

Transcriptomic analysis reveals abnormal muscle repair and remodeling in survivors of critical illness with sustained weakness.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE60038
Genome-wide analysis of high glucose and DZNep (EZH2 inhibitor) induced gene expression by mouse podocytes
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Analysis of DZNep-induced gene expression changes in cultured podocytes. The hypothesis tested in the present study was that DZnep ultimately augments Txnip expression, increasing oxidative stress in podocytes. These results provide important information on the response of podocytes to histone methyltransferase inhibition and a possible mechanism for DZNep action in podocytes.

Publication Title

The Histone Methyltransferase Enzyme Enhancer of Zeste Homolog 2 Protects against Podocyte Oxidative Stress and Renal Injury in Diabetes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE41228
Differentially Expressed Genes Regulating the Progression of Ductal Carcinoma In Situ to Invasive Breast Cancer
  • organism-icon Homo sapiens
  • sample-icon 68 Downloadable Samples
  • Technology Badge Icon Affymetrix Human X3P Array (u133x3p), Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Differentially expressed genes regulating the progression of ductal carcinoma in situ to invasive breast cancer.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE48334
The effect of Rapamycin on the transcriptome of old mouse liver
  • organism-icon Mus musculus
  • sample-icon 111 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Mice fed rapamycin have an increase in lifespan associated with major changes in the liver transcriptome.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE16440
Response of gastric epithelial progenitors to H. pylori isolates from Swedish patients with chronic atrophic gastritis
  • organism-icon Mus musculus, Helicobacter pylori
  • sample-icon 60 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Response of gastric epithelial progenitors to Helicobacter pylori Isolates obtained from Swedish patients with chronic atrophic gastritis.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE48333
The effect of chronic Rapamycin on the transcriptome of old mouse liver
  • organism-icon Mus musculus
  • sample-icon 69 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Analysis of the effect of gene expression in the livers of old mice (25 months of age) fed rapamycin chronically (21 months) from 4 months of age.

Publication Title

Mice fed rapamycin have an increase in lifespan associated with major changes in the liver transcriptome.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE16390
Response of gastric epithelial progenitors to H. pylori isolates from Swedish patients with chronic atrophic gastritis 1
  • organism-icon Mus musculus
  • sample-icon 60 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Helicobacter pylori infection is associated with development of gastric adenocarcinoma in a subset of infected humans, especially those that develop an antecedent condition, chronic atrophic gastritis (ChAG) characterized by loss of acid-producing parietal cells. Studies in a gnotobiotic transgenic mouse model of ChAG, with an engineered ablation of parietal cells and an associated expansion of gastric epithelial progenitors (GEPs), have shown that a subset of GEPs is able to harbor intracellular collections of H. pylori. To better understand H. pyloris adaptation to ChAG, we sequenced the genomes of 24 isolates, obtained from 6 individuals, each sampled over a 4-year interval, as they maintained normal gastric histology, or progressed from normal histology to ChAG, or experienced worsening ChAG, or proceeded from ChAG to cancer. Analyses of gene content and single nucleotide polymorphisms (SNPs) demonstrated that H. pylori populations within study participants were largely clonal, and remarkably stable over the 4-year interval, regardless of disease state. Because they exhibited such broad inter-host variation (38.64.7 SNPs/1000bp of genome), and did not cluster according to host pathology, we sought to identify common functional properties by performing GeneChip studies of the responses of a cultured mouse gastric stem cell-like line (mGEPs) to infection with sequenced strains. The results yielded a shared 695-member set of genes differentially expressed after infection with ChAG-associated, but not normal or heat killed strains: 434 of these genes were also represented in dataset of responses to the cancer-associated strain. Ingenuity Pathway Analysis revealed that ChAG- and ChAG/cancer- associated responses were significantly enriched in genes associated with tumorigenesis in general, and gastric carcinogenesis in specific cases. Whole genome transcriptional profiling of a sequenced ChAG strain during mGEP infection disclosed a set of responses that included upregulation of hopZ, an adhesin belonging to a family of outer membrane proteins. Expression profiles of wild-type and hopZ strains revealed a number of pH-regulated genes affected by loss of HopZ, including HopP which binds sialylated glycans produced by GEPs in vivo. Genetic inactivation of hopZ produces a fitness defect in gnotobiotic transgenic mice but not their wild-type littermates. This study illustrates an approach for identifying GEP responses specific to ChAG, and bacterial genes important for survival in a gastric ecosystem that lacks parietal cells.

Publication Title

Response of gastric epithelial progenitors to Helicobacter pylori Isolates obtained from Swedish patients with chronic atrophic gastritis.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact