refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 14981 results
Sort by

Filters

Technology

Platform

accession-icon GSE37148
Transcriptome Profiling following Neuronal and Glial Expression of ALS-linked SOD1 in Drosophila
  • organism-icon Drosophila melanogaster
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Amyotrophic Lateral Sclerosis (ALS) is generally a late onset neurodegenerative disease. Mutations in the Cu/Zn superoxide dismutase 1 (SOD1) gene accounts for approximately 20% of familial ALS and 2% of all ALS cases. Although a number of hypothesis have been proposed to explain mutant SOD1 toxicity, the molecular mechanisms of the disease remain unclear. SOD1 linked ALS is thought to function in a non-cell autonomous manner such that the motoneurons are critical for the onset and glia contribute to the progress of the disease. To dissect the roles of motoneurons and glia, we used the Gal4-UAS system to determine gene expression changes following the expression of mutant human SOD1 (G85R) selectively in either motoneurons or glia, and concurrently in motoneurons and glia of flies. We conducted a microarray on young (5 days old) and old (45 days old) flies expressing G85R in these cell types and identified a number of genes involved in a variety of processes. The candidate genes identified by this screen may help elucidate the individual and combined contributions of motoneurons and glial cells in ALS.

Publication Title

Transcriptome Profiling Following Neuronal and Glial Expression of ALS-Linked SOD1 in Drosophila.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE11087
E. coli Isoleucine starvation and stringent response network
  • organism-icon Escherichia coli str. k-12 substr. mg1655
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

Transcription profiling of wild type, relA-, and relA-spoT-, crp-, dksA-, rpoS-, lrp- mutant strains of E. coli starved for isoleucine

Publication Title

The global, ppGpp-mediated stringent response to amino acid starvation in Escherichia coli.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE17002
Gene expression in mature pollen and sperm cells versus young seedling as a vegetative sporophyte reference control
  • organism-icon Oryza sativa
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Rice Genome Array (rice)

Description

Sperm cells represent the male partner that fuses with the egg cell during fertilization in all multi-cellular eukaryotic organisms, and, in flowering plants, is a founder of both embryo and nutritive endosperm. We examined the transcriptome of Oryza sativa ssp. japonica using the Affymetrix 57K rice genome GeneChip to provide an overview of genes activated in the paternal gamete.

Publication Title

Transcriptome-based examination of putative pollen allergens of rice (Oryza sativa ssp. japonica).

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE45553
Transcriptional profiling of ovarian cancer spheroids reveals genes and related biological pathways associated with cisplatin resistance
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Characterization of differential gene expression due to cisplatin resistance in human ovarian cancer spheroids by microarray analysis.

Publication Title

Cisplatin Resistant Spheroids Model Clinically Relevant Survival Mechanisms in Ovarian Tumors.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE79706
Characterization of Human Lung Airway APC Subsets
  • organism-icon Homo sapiens
  • sample-icon 65 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The respiratory system is a complex network of many cell types, including subsets of macrophages and dendritic cels, that work together to maintain steady-state respiration. Due to limitations in acquiring cells from healthy human lung, these subsets remain poorly characterized transcriptionally and phenotypically. We set out to systemically identify these subsets in human airways, by developing a schema of isolating large numbers of cells by whole lung bronchoalveolar lavage. Six subsets of phagocytic antigen presenting cells were consistently observed, which varied in their ability to internalize bacterial particles. Subsets could be further separated by their inherent capacities to upregulate CD83, CD86, and CCR7. Whole genome transcriptional profiling revealed a clade of true dendritic cells distinct from a macrophage/monocyte clade. Each clade, and each member of both clades, could be discerned by specific genes of increased expression, which would serve as markers for future studies in healthy and diseased states.

Publication Title

Transcriptional Classification and Functional Characterization of Human Airway Macrophage and Dendritic Cell Subsets.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE46211
Gene expression profiling of anterior and posterior palatal tissue from Tgfbr2 mutant mouse models
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The overall goal of this project is to investigate the role of TGF-beta signaling in epithelial cells as it pertains to the orientation of muscle fibers in the soft palate during embryogenesis. Here, we first conducted gene expression profiling of the anterior and posterior portions of the palate from wild-type mice. In addition, we also conducted gene expression profiling of the posterior palate in mutant mice with an epithelium-specific conditional inactivation of the Tgfbr2 gene. The latter mice provide a model of submucosal cleft palate, which is a congenital birth defect commonly observed in many syndromic conditions.

Publication Title

TGFβ regulates epithelial-mesenchymal interactions through WNT signaling activity to control muscle development in the soft palate.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE67087
Gene expression profiling of the palate in Erk2 mutant mouse models
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The overall goal of this project is to investigate the role of Erk2-mediated signaling in regulating the cellular metabolism of cranial neural crest (CNC) cells during palate development. Here, we conducted gene expression profiling of palate tissue from wild type mice as well as those with a neural crest specific conditional inactivation of the Erk2 gene. The latter mice exhibit micrognathia, tongue defects and cleft palate, which is among the most common congenital birth defects and observed in many syndromic conditions.

Publication Title

Disruption of the ERK/MAPK pathway in neural crest cells as a potential cause of Pierre Robin sequence.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE55233
Gene expression for transformed YAMC clones
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

YAMC murine colonic epithelial cells were repeatitively treated with commensal bacteria-polarized macrophages or 4-HNE. Following 10 treatments, 25 clones were selected to engraft immunodeficient mice, and 10 out of 25 clones grew tumors in these mice. To explore gene expression associated with cellular transformation, whole-genome profiling was performed on 10 transformed clones and compared with untreated YAMC controls using Illumina Mouse WG-6 v2.0 Expression BeadChip.

Publication Title

Commensal bacteria drive endogenous transformation and tumour stem cell marker expression through a bystander effect.

Sample Metadata Fields

Age, Specimen part, Cell line, Treatment

View Samples
accession-icon GSE51479
Gene expression profiling of murine incisor pulp following resection of the inferior alveolar nerve
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The overall goal of this project is to investigate the contribution of the inferior alveolar nerve (IAN) towards cellular mechanisms required for regeneration of the murine incisor. Here, we conducted gene expression profiling of adult murine incisor dental mesenchyme tissue following two weeks after unilateral resection of the IAN from both the denerved and contralateral incisor of five wild-type mice.

Publication Title

Secretion of shh by a neurovascular bundle niche supports mesenchymal stem cell homeostasis in the adult mouse incisor.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE52358
Gene expression profiling of the tongue bud from Alk5 mutant mouse models
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The overall goal of this project is to investigate the role of TGF-beta signaling in tissue-tissue interactions between myogenic precursors of craniofacial muscles and cranial neural crest cells (CNCCs). Here, we conducted gene expression profiling of the tongue bud from mice at embryonic day E13.5 with a CNCC-specific conditional inactivation of the TGF-beta receptor type 1 gene Alk5. These mice provide a model of microglossia as well as disrupted extraocular and masticatory muscle development, which are congenital birth defects commonly observed in several syndromic conditions.

Publication Title

ALK5-mediated transforming growth factor β signaling in neural crest cells controls craniofacial muscle development via tissue-tissue interactions.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact