refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1188 results
Sort by

Filters

Technology

Platform

accession-icon GSE158106
Effects of mechanical stress and deficiency of dihydrotestosterone or 17β-estradiol on temporomandibular joint osteoarthritis in mice
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Clariom S Array (clariomsmouse)

Description

Temporomandibular joint osteoarthritis (TMJ-OA), a subtype of temporomandibular joint dysfunction (TMD), is characterized by progressive cartilage degradation, subchondral bone erosion, and chronic pain. Although there has been extensive research on TMJ-OA, its etiology remains unknown. Age, hormonal factors, and excessive mechanical stress on the TMJ are proposed risk factors for TMJ-OA.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE43744
Comparison of Gene Expression between Peri-implant Soft Tissue and Oral Mucosal Tissue
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

The mucosal penetration area formed by implant placement is critical problems of dental implant treatment, because epithelial barrier is broken and it can become a source of inflammation. To clarify the influence and risk caused by dental implant treatment in peri-implant soft tissue, we compared to gene expression profile of peri-implant soft tissue and oral mucosal tissue with microarray analysis.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE56533
Scgb1a1, Lpo and Gbp2 is Characteristically Expressed in Rat Peri-Implant Epithelium.
  • organism-icon Rattus norvegicus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

The peri-implant epithelium plays an important role in the prevention against initial stage of inflammation. In order to minimize the risk of peri-implantitis, it is necessary to understand the biological characteristics of the peri-implant epithelium. The aim of this study was to investigate the characteristic gene expression profile of peri-implant epithelium as compared to junctional epithelium using laser microdissection and microarray analysis.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE19488
Down-regulated Genes in Mouse Dental Papillae and Pulp
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Goal of experiment: Identify genes down-regulated between pre- and post-natal stages in mouse dental papillae.

Publication Title

Down-regulated genes in mouse dental papillae and pulp.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE26077
Expression genes induced by intermittent mechanical stress (MS) in human periodontal ligament (PDL) cells
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Excessive MS is known to result in disappearance of the alveolar hard line, enlargement of thePDL space, and destruction of alveolar bone, leading to occlusal traumatism. The regulatory role of MS is believed to play a critical role in the process of alveolar bone remodeling. However, little is known about the effect of excessive MS on expression of osteoclastogenesis-related genes in human PDL cells.

Publication Title

Hyperocclusion stimulates osteoclastogenesis via CCL2 expression.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE112791
Comprehensive molecular characterization of liver cancer and inheritance of the phenotypic traits during tumor recurrence
  • organism-icon Homo sapiens
  • sample-icon 214 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Comprehensive molecular and immunological characterization of hepatocellular carcinoma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE112790
Comprehensive molecular characterization of liver cancer and inheritance of the phenotypic traits during tumor recurrence [tissue]
  • organism-icon Homo sapiens
  • sample-icon 198 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Hepatocellular carcinoma (HCC) is a heterogeneous disease with a variety of etiological factors, and ranks as the second leading cause of cancer-related mortality worldwide due to multifocal recurrence. Comprehensive molecular evaluation of HCC by multiplatform analysis defined three major subtypes: (1) mitogenic and stem cell-like tumors with chromosomal instability; (2) CTNNB1-mutated tumors displaying DNA hypermethylation; and (3) metabolic syndrome-associated tumors, which included an immunogenic subgroup characterized by macrophage infiltration and favorable prognosis. Although genomic and epigenomic analysis explicitly discriminated HCC with intrahepatic metastasis (IM) from multicentric HCC (MC), the phenotypic similarity between the primary and recurrent tumors was not linked to the IM/MC diagnosis, but rather the integrated classification. Thus, identification of these HCC subtypes provides insights into patient stratification and opportunities for therapeutic development.

Publication Title

Comprehensive molecular and immunological characterization of hepatocellular carcinoma.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE69762
Gene expression of human small intestine generated by biopsy specimens
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The entire small intestine was obseved by balloon endoscopy. Biopsy specimens were taken from jejunum, ileum and colon, respectively.

Publication Title

Reduced Human α-defensin 6 in Noninflamed Jejunal Tissue of Patients with Crohn's Disease.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE52915
PARVB overexpression increases migration capability and defines high risks for endophytic growth and metastasis in tongue squamous cell carcinoma.
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Tongue squamous cell carcinoma (TSCC) varies in characteristics even in early stages and is mainly classified into three subtypes, which are superficial, exophytic and endophytic types, based on a macroscopic appearance of tumor growth.Of these subtypes, endophytic tumor has a poorer prognosis because of its invasive feature and higher frequency to have metastasis. To understand a molecular mechanism of endophytic subtype and identify biomarkers, we performed comprehensive microarray analysis for mRNAs from clinical biopsy sampleswhich were classified into subtypes and found overexpression of parvin-beta (PARVB) gene significantly related to endophytic type. PARVB is known to play a critical role in actin reorganization and focal adhesions. Knocking down PARVB expression in vitrocaused apparent decreases in cell migration and wound healing, implying that PARVB has a crucial role in cellular motility. Moreover, metastasis-free survival was significantly lowered in patients with higher PARVB expression. Therefore overexpression of PARVB is a candidate biomarker for endophytic tumor and metastasis and may be clinically applicable for decision making of an adjuvant therapy in TSCC.

Publication Title

PARVB overexpression increases cell migration capability and defines high risk for endophytic growth and metastasis in tongue squamous cell carcinoma.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE112788
Comprehensive molecular characterization of liver cancer and inheritance of the phenotypic traits during tumor recurrence [cell line]
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Hepatocellular carcinoma (HCC) is a heterogeneous disease with a variety of etiological factors, and ranks as the second leading cause of cancer-related mortality worldwide due to multifocal recurrence. Comprehensive molecular evaluation of HCC by multiplatform analysis defined three major subtypes: (1) mitogenic and stem cell-like tumors with chromosomal instability; (2) CTNNB1-mutated tumors displaying DNA hypermethylation; and (3) metabolic syndrome-associated tumors, which included an immunogenic subgroup characterized by macrophage infiltration and favorable prognosis. Although genomic and epigenomic analysis explicitly discriminated HCC with intrahepatic metastasis (IM) from multicentric HCC (MC), the phenotypic similarity between the primary and recurrent tumors was not linked to the IM/MC diagnosis, but rather the integrated classification. Thus, identification of these HCC subtypes provides insights into patient stratification and opportunities for therapeutic development.

Publication Title

Comprehensive molecular and immunological characterization of hepatocellular carcinoma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact