refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 12372 results
Sort by

Filters

Technology

Platform

accession-icon GSE115111
Expression data from wheat root
  • organism-icon Triticum aestivum
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Wheat Genome Array (wheat)

Description

Root foraging strategy of wheat for potassium (K) heterogeneity is based on special gene expressions. Low-K responsive genes, such as peroxidases, mitochondrion, transcription factor activity, calcium ion binding and respiration, up-regulated in Sp. NK rather than in Sp. LK. Methyltransferase activity, protein amino acid phosphorylation, potassium ion transport, protein kinase activity genes were found among down-regulated genes in Sp. LK.

Publication Title

Potential Root Foraging Strategy of Wheat (<i>Triticum aestivum</i> L.) for Potassium Heterogeneity.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE29882
Global transgenerational gene expression dynamics in two nascent allohexaploid wheat lines analogous in genome constitution to common wheat (Triticum aestivum)
  • organism-icon Triticum turgidum subsp. durum, Triticum carthlicum, Triticum aestivum, Aegilops tauschii
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Wheat Genome Array (wheat)

Description

Alteration in gene expression accompanying initial stages of allopolyploidy is a prominent feature in plants, but its spectrum and model are highly idiosyncratic. We used multi-colour GISH to identify individuals from two nascent allohexaploid wheat lines between Triticum turgidum and Aegilops tauschii, which had a transgenerationally stable chromosomal constitution mimicking that of common wheat. We performed genomewide analysis of gene expression for these plants along with their parental species using the Affymetrix GeneChip Wheat Genome-Array. Comparison with parental species coupled with inclusion of empirical mid-parent values (MPVs) revealed two patterns of alteration in gene expression in the allohexaploid lines: parental dominance expression and nonadditive expression. Genes involved in each altered pattern could be classified into three distinct groups, stochastic, heritable and persistent, based on their transgenerational heritability and inter-line conservation. Whereas both altered patterns of gene expression showed a propensity of inheritance, identity of the involved genes is stochastic, consistent with the involvement of diverse Gene Ontology (GO) terms. Nonetheless, those genes showing nonadditive expression exhibited a significant enrichment for vesicle-function. Our results suggest global alteration in gene expression conditioned by nascent allopolyploidy likely play functional roles in stabilization and establishment of the newly formed plants, and consequential to evolution.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE76178
The gene expression data of OsNPR1 overexpression and its wild type Taipei 309 plants.
  • organism-icon Oryza sativa
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rice Genome Array (rice)

Description

We have found that overexpression of OsNPR1, a master gene for SAR in rice, greatly enhanced disease resistance. However, the growth and development of the OsNPR1 overexpression (OsNPR1-OX) lines were restrained and the mechanism remained elusive.

Publication Title

The Systemic Acquired Resistance Regulator OsNPR1 Attenuates Growth by Repressing Auxin Signaling through Promoting IAA-Amido Synthase Expression.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE16567
Genome-wide transcriptome analysis of two maize inbred lines under drought stress during the seedling stage
  • organism-icon Zea mays
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Maize Genome Array (maize)

Description

To understand the transcriptome changes during drought tolerance in maize, the drought-tolerant line Han21 and drought-sensitive line Ye478, which show substantial differences in drought tolerance at the seedling stage, were selected for this study. Using the GeneChip Maize Genome Arrays, we applied genome-wide gene expression analysis to the two genotypes under gradual drought stress and re-watering. We identified 2172 common regulated transcripts in both lines under drought stress, with 1084 common up-regulated transcripts and 1088 common down-regulated transcripts. Among the 2172 transcripts, 58 potential protein kinases and 117 potential transcription factors were identified. The potential components of the ABA signaling pathway were identified from the common regulated transcripts. We also identified 940 differentially regulated transcripts between the two lines. Among the 940 transcripts, the differential expression levels of 29 transporters and 15 cell wall-related transcripts may contribute to the different tolerances of the two lines. Additionally, we found that the drought-responsive genes in the tolerant Han21 line recovered more quickly when the seedlings were re-watered, and 311 transcripts in the tolerant Han21 line were exclusively up-regulated at the re-watering stage compared to the control and stress conditions. Our study provides a global characterization of two maize inbred lines during drought stress and re-watering and will be valuable for further study of the molecular mechanisms of drought tolerance in maize.

Publication Title

Genome-wide transcriptome analysis of two maize inbred lines under drought stress.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE19239
Transgenic rice line carrying the maize resistance gene Rxo1 to Xanthomonas oryzae pv. oryzicola
  • organism-icon Oryza sativa
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Rice Genome Array (rice)

Description

Genome-wide gene responses in a transgenic rice line carrying the maize resistance gene Rxo1 to the rice bacterial streak pathogen, Xanthomonas oryzae pv. oryzicola

Publication Title

Genome-wide gene responses in a transgenic rice line carrying the maize resistance gene Rxo1 to the rice bacterial streak pathogen, Xanthomonas oryzae pv. oryzicola.

Sample Metadata Fields

Specimen part

View Samples
accession-icon E-MTAB-397
Transcription profiling by array of rice with chalky grain endosperm
  • organism-icon Oryza sativa
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rice Genome Array (rice)

Description

A near-isogenic rice line CSSL50-1 with high chalkiness and Asominori (the parental line) with normal grain endosperm were used for comparative studies of rice grain endosperm chalkiness,transcriptome comparison of 15 DAF caryopses using Affymetrix rice GeneChip identified differential expressed genes between these two lines.

Publication Title

Transcriptome analysis of grain-filling caryopses reveals involvement of multiple regulatory pathways in chalky grain formation in rice.

Sample Metadata Fields

Age, Specimen part, Time

View Samples
accession-icon GSE39298
Comparison of transcriptome profile between wild-type and Epi-df mutant plants
  • organism-icon Oryza sativa
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rice Genome Array (rice)

Description

We identified and characterized a rice epigenetic mutant Epi-df which exhibits a dwarf stature and various floral defects that are inherited in a dominant fashion. We demonstrated that Epi-df participates in Polycomb repressive complex 2 (PRC2) mediated gene silencing. Epigenetic mutations results in ectopic expression of Epi-df and pleiotropic developmental defects in mutant plants. Moreover, ectopic expression of Epi-df leads to mis-regulated H3K27me3 and changed expression of hundreds of genes involved in a wide range of biological processes.

Publication Title

Identification and characterization of an epi-allele of FIE1 reveals a regulatory linkage between two epigenetic marks in rice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE30838
Transcriptional profile of Escherichia coli K12 strain JM109 under 200 mM glyphosate shock
  • organism-icon Escherichia coli
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

Glyphosate (GLY) is an effective antimetabolite that acts against the shikimate pathway 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase, However, little is known about the genome-scale transcriptional responses of bacteria after glyphosate shock. To investigate further the mechanisms by which E. coli response to a glyphosate shock, a DNA-based microarray was used for transcriptional analysis of E. coli exposed to 200 mM glyphosate.

Publication Title

Genome-wide transcriptional responses of Escherichia coli to glyphosate, a potent inhibitor of the shikimate pathway enzyme 5-enolpyruvylshikimate-3-phosphate synthase.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE46625
Transcriptional profile of Escherichia coli K12 strain JM109 harboring pUCA1501
  • organism-icon Escherichia coli
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

A1501 aroA is a gene derived from Pseudomonas stutzeri A1501, encoding a class II glyphosate-tolerant EPSP synthase. To understand the effect of class II EPSP synthase to E. coli under glyphosate shock, we constructed the class II EPSP synthase-expressing plasmid pUC-A1501. And pUC18 is the empty vector used as a control.

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE15048
Gibberellin-induced gene expression in maize mesocotyl under deep-sowing condition
  • organism-icon Zea mays
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Maize Genome Array (maize)

Description

In order to elucidate the molecular mechanism of gibberellin (GA)-induced mesocotyl elongation, gene expression profiling analyses were performed in a deep-sowing tolerant maize inbred line 3681-4. Gene expression studies combing Affymetrix GeneChip analysis and Real-time PCR were employed to determine the molecular mechanism underlying GA promotion of maize mesocotyl elongation. These studies showed that the GA receptor GID1, the transcriptional factor MYB, and the genes encoding DELLA protein DWRF8, kinases, Raf, LRR, RLCK, and involved in flavonoid biosynthesis, aminosugars metabolism, cell wall synthesis and modification, might play critical roles in maize mesocotyl elongation.

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact