Molecular mechanisms underlying sarcopenia, the age-related loss of skeletal muscle mass and function, remain unclear. To identify molecular changes that correlated best with sarcopenia and might contribute to its pathogenesis, we determined global gene expression profiles in muscles of rats aged 6, 12, 18, 21, 24, and 27 months. These rats exhibit sarcopenia beginning at 21 months. Correlation of the gene expression versus muscle mass or age changes, and functional annotation analysis identified gene signatures of sarcopenia distinct from gene signatures of aging. Specifically, mitochondrial energy metabolism (e.g., tricarboxylic acid cycle and oxidative phosphorylation) pathway genes were the most downregulated and most significantly correlated with sarcopenia. Also, perturbed were genes/pathways associated with neuromuscular junction patency (providing molecular evidence of sarcopenia-related functional denervation and neuromuscular junction remodeling), protein degradation, and inflammation. Proteomic analysis of samples at 6, 18, and 27 months confirmed the depletion of mitochondrial energy metabolism proteins and neuromuscular junction proteins. Together, these findings suggest that therapeutic approaches that simultaneously stimulate mitochondrogenesis and reduce muscle proteolysis and inflammation have potential for treating sarcopenia.
Genomic and proteomic profiling reveals reduced mitochondrial function and disruption of the neuromuscular junction driving rat sarcopenia.
Sex, Age, Specimen part
View SamplesWe sought to identify critical factors regulating muscle stem cell activation and commitment, and determined through loss-of-function analyses that HMGA2 (high mobility group AT-hook 2) is a key regulator of myogenesis both in vitro and in vivo.
An HMGA2-IGF2BP2 axis regulates myoblast proliferation and myogenesis.
Sex, Specimen part
View SamplesIncreasing evidence suggests that Long non-coding RNAs (LncRNAs) represent a new class of regulators of stem cells. However, the roles of LncRNAs in stem cell maintenance and myogenesis remain largely unexamined. For this study, hundreds of novel intergenic LncRNAs were identified that are expressed in myoblasts and regulated during differentiation. One of these LncRNAs, termed LncMyoD, is encoded next to the Myod gene and is directly activated by MyoD during myoblast differentiation. Knockdown of LncMyoD strongly inhibits terminal muscle differentiation largely due to a failure to exit the cell cycle. LncMyoD directly binds to IGF2-mRNA-binding-protein 2 (IMP2) and negatively regulates IMP2-mediated translation of proliferation genes such as N-Ras and c-Myc. While the RNA sequence of LncMyoD is not well-conserved between human and mouse, its locus, gene structure and function is preserved. The MyoD-LncMyoD-IMP2 pathway elucidates a mechanism as to how MyoD blocks proliferation to create a permissive state for differentiation.
A long non-coding RNA, LncMyoD, regulates skeletal muscle differentiation by blocking IMP2-mediated mRNA translation.
Age
View SamplesChronic obstructive pulmonary disease is a smoking-related disease that lacks effective therapies due partly to the poor understanding of disease pathogenesis. The aim of this study was to identify molecular pathways which could be responsible for the damaging consequences of smoking. To do this, we employed recently described bioinformatic methods to analyze differences in global gene expression, which we then related to the pathological changes induced by cigarette smoke (CS). Sprague-Dawley rats were exposed to whole-body CS for 1 day and for various periods up to 8 months.
Comprehensive gene expression profiling of rat lung reveals distinct acute and chronic responses to cigarette smoke inhalation.
Sex, Specimen part
View SamplesAge-related frailty may in part be due to a decreased competency in skeletal muscle regeneration. The role of the closely related TGFbeta amily molecules myostatin and GDF11 in regeneration is unclear. The commercially available antibody which in a prior report was used to demonstrate an age-related decrease in GDF11 was found to detect both GDF11 and myostatin, and with this reagent it appears that the combination of GDF11 and myostatin increases with age in serum. Mechanistically, GDF11 and myostatin induce SMAD2/3 phosphorylation, and both inhibit myoblast differentiation and regulate identical downstream signaling. GDF11 injected into adult mice in a model of regeneration induces an increase in smaller fibers and a decrease in satellite cell expansion. There are no signs of benefit from GDF11 to regeneration. Thus, GDF11 appears to be an age-associated myokine that inhibits muscle differentiation, and is thus a target for blockade to treat frailty
GDF11 Increases with Age and Inhibits Skeletal Muscle Regeneration.
Treatment, Time
View SamplesGene expression upon DOT1L inhibition, or Menin inhibition, or a combination of DOT1L and Menin inhibiting agents, was assessed in several MLL-rearranged human cell lines and a mouse model of MLL-AF9 leukemia.
Complementary activities of DOT1L and Menin inhibitors in MLL-rearranged leukemia.
Cell line
View SamplesUtilizing glycerol and cardiotoxin (CTX) injections in the tibialis anterior muscles of M. musculus provides models of skeletal muscle damages followed by skeletal muscle regeneration. In particular, glycerol-induced muscle regeneration is known to be associated with ectopic adipogenesis. We characterized genome-wide expression profiles of tibialis anterior muscles from wild-type mice injured by either glycerol or CTX injection. Our goal was to detect gene expression changes during the time course of glycerol-induced and CTX-induced muscle regeneration models, that can lead to ectopic adipocyte accumulation.
Genomic profiling reveals that transient adipogenic activation is a hallmark of mouse models of skeletal muscle regeneration.
Sex, Age, Specimen part
View SamplesThe RPMI-8226 human multiple myeloma cell line was stably infected with either a validated shRNA against BMI1 or a control shRNA. RNA was prepared from these lines, +/- doxycycline induction and at various time points post-induction. Samples were hybridized on the Affymetrix U133plus2 human genome expression microarray.
The Polycomb group protein Bmi-1 is essential for the growth of multiple myeloma cells.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
No associated publication
Specimen part, Treatment
View SamplesThe series were performed to study the changes in gene expression upon diploidization of KBM7 cancer (CML) cell line. The line can exist either as a clone with 24 chromosomes (nearly haploid) or with
No associated publication
Specimen part, Cell line
View Samples