refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 4209 results
Sort by

Filters

Technology

Platform

accession-icon GSE19299
Expression data with mouse osteoblast cell from wild-type and retinoblastoma tumor suppressor(Rb) knock-out.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Here we report the characterization of a novel role for the retinoblastoma protein (pRb) as a regulator of osteoblast adhesion. Abrogation of pRb in osteoblasts resulted in aberrant cadherin expression and loss of adherens junctions. This produced defects suggestive of a transformed phenotype such as impaired cell-to-cell adhesion, loss of contact-dependent growth arrest, and the capacity to evade anoikis. This also resulted in profound abnormalities in bone structure. Consistent with this, microarray analyses showed that pRb regulates a wide repertoire of osteoblast cell adhesion genes. In addition, pRb loss also resulted in altered expression and function of several known regulators of cellular adhesion and adherens junction assembly, such as the Rho GTPase Rac1 and the merlin tumor suppressor. Taken together, our results show that pRb controls cell adhesion by regulating the expression and adherens junction components and by regulating the function of molecules involved in adherens junction assembly and stability.

Publication Title

A role for the retinoblastoma protein as a regulator of mouse osteoblast cell adhesion: implications for osteogenesis and osteosarcoma formation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE10780
Proliferative genes dominate malignancy-risk gene signature in histologically-normal breast tissue
  • organism-icon Homo sapiens
  • sample-icon 185 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Analysis of 143 completely histologically-normal breast tissues resulted in the identification of a malignancy risk gene signature that may serve as a marker of subsequent risk of breast cancer development.

Publication Title

Proliferative genes dominate malignancy-risk gene signature in histologically-normal breast tissue.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE29623
mRNA and microRNA profile in colon cancer
  • organism-icon Homo sapiens
  • sample-icon 65 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Complementary strand microRNAs mediate acquisition of metastatic potential in colonic adenocarcinoma.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE23603
Gene expression in ovarian cancer
  • organism-icon Homo sapiens
  • sample-icon 59 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

BAD phosphorylation determines ovarian cancer chemosensitivity and patient survival.

Sample Metadata Fields

Disease stage, Cell line

View Samples
accession-icon GSE29621
mRNA and microRNA profile in colon cancer [mRNA data]
  • organism-icon Homo sapiens
  • sample-icon 65 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Compariosn of mRNA and miRNA profile in colon cancer

Publication Title

Complementary strand microRNAs mediate acquisition of metastatic potential in colonic adenocarcinoma.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE23553
Gene expression changes with induction of in-vitro platinum-resistance in ovarian cancer cell lines.
  • organism-icon Homo sapiens
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

We treated 8 human ovarian cancer cell lines with cisplatin in treatment/recovery cycles to induce in-vitro resistance to the drug. Microarrays measured gene expression at baseline and after each dose schedule (after recovery).

Publication Title

BAD phosphorylation determines ovarian cancer chemosensitivity and patient survival.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE64300
Tolerance associated gene expression following allogeneic hematopoietic cell transplantation
  • organism-icon Homo sapiens
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Biologic markers of immune tolerance may facilitate tailoring of immune suppression duration after allogeneic hematopoietic cell transplantation (HCT). In a cross-sectional study, peripheral blood samples were obtained from tolerant (n=15, median 38.5 months post-HCT) and non-tolerant (n=17, median 39.5 post-HCT) HCT recipients and healthy control subjects (n=10) for analysis of immune cell subsets and differential gene expression. There were no significant differences in immune subsets across groups. We identified 281 probe sets unique to the tolerant (TOL) group and 122 for non-tolerant (non-TOL). These were enriched for process networks including NK cell cytotoxicity, antigen presentation, lymphocyte proliferation, and cell cycle and apoptosis. Differential gene expression was enriched for CD56, CD66, and CD14 human lineage-specific gene expression. Differential expression of 20 probe sets between groups was sufficient to develop a classifier with > 90% accuracy, correctly classifying 14/15 TOL cases and 15/17 non-TOL cases. These data suggest that differential gene expression can be utilized to accurately classify tolerant patients following HCT. Prospective investigation of immune tolerance biologic markers is warranted.

Publication Title

Tolerance associated gene expression following allogeneic hematopoietic cell transplantation.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE23554
Ovarian Cancer Dataset
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Background. Genome-wide expression changes are associated with development of chemoresistance in patients with ovarian cancer (OVCA); the BCL2 antagonist of cell death (BAD) apoptosis pathway may play a role in clinical outcome.

Publication Title

BAD phosphorylation determines ovarian cancer chemosensitivity and patient survival.

Sample Metadata Fields

Disease stage

View Samples
accession-icon GSE44619
Effect of NF-kB inhibition and activation on gene expression in mouse and human lung cancer cell-lines
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Effect of NF-kB inhibition and activation on gene expression in mouse and human lung cancer cell-lines.

Publication Title

Lung tumor NF-κB signaling promotes T cell-mediated immune surveillance.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE112567
Expression data from mouse CD19-targeted CAR (chimeric antigen receptor) T cells after antigen stimulation
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact