refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 22 results
Sort by

Filters

Technology

Platform

accession-icon GSE34268
Expression data from normal and MDS erythroids cell cutlures ex vivo
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

CD34 positive cells of bone marrow samples from normal and MDS samples were cultured ex vivo into erythroid conditions.

Publication Title

Defective nuclear localization of Hsp70 is associated with dyserythropoiesis and GATA-1 cleavage in myelodysplastic syndromes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE102976
Lenalidomide-mediated erythroid improvement in non-del(5q) myelodysplastic syndromes is associated with bone marrow immuno-remodeling [Affymetrix]
  • organism-icon Homo sapiens
  • sample-icon 37 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

In the field of MDS and on bone marrow mononuclear cells , we search for a signature which predict the response to Lenalidomide treatment.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE46151
Six homeoproteins and a linc-RNA cooperate at the fast MYH locus to lock terminal fast myofibre phenotype
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Thousands of long intergenic noncoding RNAs (lincRNAs) are encoded by the mammalian genome, which were reported to have multiple biological functions as transcriptional activators acting in cis 1 or trans 2, transcriptional repressors 3,4 or miRNAs decoys 5,6. However, the function of most lincRNAs has not yet been identified in vivo. Here, we demonstrate a role for linc-MYH, a novel long intergenic noncoding RNA, in adult fast-type myofibre specialization. Skeletal myofibre fast and slow phenotypes are established through differential expression of numerous fibre-specific genes7. We show linc-MYH and the fast MYH genes share a common enhancer located in the fast MYH genes locus and regulated by the Six1 homeoproteins. Muscle-specific Six1 mutant mice show increased expression of slow-type genes, and downregulation of linc-MYH and fast-type genes. linc-MYH function revealed by in vivo knockdown and wide transcriptomic analysis, is in fine to prevent expression of genes ensuring slow muscle contractile properties, and to increase fast-type muscle gene expression in fast-type myofibres. Thus, formation of efficient fast sarcomeric units and appropriate Ca++ cycling and excitation/contraction/relaxation coupling in fast- myofibres is achieved through the coordiante control of fast MYHs and linc-MYH expression by a Six bound enhancer.

Publication Title

Six homeoproteins and a Iinc-RNA at the fast MYH locus lock fast myofiber terminal phenotype.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE57898
Transcriptomic analysis of APC knockdown in proliferating primary myoblasts
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

APC is a key regulator of canonical Wnt signalling since it participates to beta-catenin targeting to proteasomal degradation when the pathway is inactive. Moreover, independently of Wnt signaling, APC regulates several cellular functions such as mycrotubule dynamics, chromosome segregation, cell adhesion. Although APC has been widely studied for its implication in initation and progression of several cancers, its role in satellite cells (skeletal muscle stem cells) has never been investigated.

Publication Title

APC is required for muscle stem cell proliferation and skeletal muscle tissue repair.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE72496
Expression data from primary myoblasts with active Beta-catenin
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Regeneration of the adult skeletal muscle tissue relies on a population of muscle stem cells called satellite cells. During tissue repair, satellite cells exhibit active canonical Wnt/beta-catenin signaling.

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE50023
Six1 homeoprotein drives myofiber type IIA specialization in soleus muscle
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Six homeoproteins regulate fast MYH expression and calcium homeostasis

Publication Title

No associated publication

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon E-MEXP-1849
Transcription profiling of skeletal muscle from wild type and Six1/ Six4 knock out mice at E10.5 to identify genes under the control of the Six proteins
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

The aim of the experiment was to compare the transcriptome of Six1-/-Six4-/- and control embryos in order to identify genes under the control of Six proteins at E10.5.<br></br><br></br>E10.5 embryos were eviscerated, head and limbs were discarded, the neural tube was removed, and RNAs were prepared with the remaining axial tissues. <br></br><br></br>E10.5 RNAs from three SixdKO and two control embryos were hybridized on Affymetrix mouse genome 430A2.0 arrays (Affymetrix, Strasbourg - France).

Publication Title

No associated publication

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon E-MEXP-1848
Transcription profiling of mouse back muscle from Six1-/-Six4-/- and control embryos in order to identify genes under the control of Six proteins at E18.5. E18.5
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

The aim of the experiment was to compare the transcriptome of Six1-/-Six4-/- and control embryos in order to identify genes under the control of Six proteins at E18.5. E18.5 RNAs from back muscles of three SixdKO and two control embryos were hybridized on Affymetrix mouse genome 430A2.0 arrays (Affymetrix, Strasbourg - France).

Publication Title

No associated publication

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE84016
Expression data from Rspo1-null differentiating primary myoblasts
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Regeneration of the adult skeletal muscle tissue relies on a population of muscle stem cells called satellite cells. During tisse repair, satellite cells exhibit active canonical Wnt/beta-catenin signaling. Rspo1 is a modulator of Wnt signaling in many tissue, and is expressed by muscle progenitor cells.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE77393
EphA4 is Involved in Sleep Regulation But Not in the Electrophysiological Response to Sleep Deprivation
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Here, we investigated the role of EphA4 in the molecular response to sleep deprivation by measuring forebrain gene expression in EphA4 KO mice. More precisely, we measured the effect of the mutation and of a 6-h sleep deprivation on genome-wide forebrain gene expression using microarray. Please cite the original paper when you use these data (Freyburger et al., Sleep, 2016)

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact