refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 40 results
Sort by

Filters

Technology

Platform

accession-icon GSE21603
Expression profiles of colon epithelial cells and tumor samples of wild-type and vil-Cre-Bcl9-/-/Bcl9l-/- mice
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE21576
Expression profiles of laser dissected colon tumor samples of wild-type mice and vil-Cre-Bcl9-/-/Bcl9l-/- mice
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To investigate the impact of ablating Bcl9/Bcl9l on tumorigenesis, 6-8- week-old mice were exposed first to a single dose dimethylhydrazine (DMH, 44 mg/kg body weight), which is metabolized in the liver to carcinogenic azoxymethane (AOM), followed by 7 days oral administration of 2 % dextrane sulfate sodium (DSS) in the drinking water. This regimen results in the emergence of dysplastic adenomas, which progress to differentiated adenocarcinomas that are morphologically similar to human colorectal adenocarcinomas and typically harbor -catenin stabilizing mutations of GSK3 phosphorylation sites. Accordingly, these tumors present hallmarks of active Wnt signaling such as accumulation of nuclear -catenin and expression of Wnt target genes.

Publication Title

Bcl9/Bcl9l are critical for Wnt-mediated regulation of stem cell traits in colon epithelium and adenocarcinomas.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE21549
Expression profiles of EDTA-dissociated colon epithelial cells of wild-type mice and vil-Cre-Bcl9-/-/Bcl9l-/- mice.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To assess potential changes in Wnt signaling more comprehensively, EDTA-dissociated colon epithelial cells from three pools of wild-type and Bcl9/Bcl9l-mutant mice were subjected to an exploratory comparative gene expression profiling.

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11357
Irradiated stroma selects for invasive and metastatic tumoc cells
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Radiotherapy is widely used to treat human cancer. Patients locally recurring after radiotherapy, however, have increased risk of metastatic progression and poor prognosis. The clinical management of post-radiation recurrences remains an unresolved issue. Tumors growing in pre-irradiated tissues have an increased fraction of hypoxic cells and are more metastatic, a condition known as tumor bed effect. Here we demonstrate that tumor cells growing in a pre-irradiated bed, or selected in vitro though repeated cycles of severe hypoxia, retain an invasive and metastatic capacities when returned to normoxia. HIF activity, while it facilitates metastatic spreading of tumors growing in a pre-irradiated bed, is not essential. Through gene expression profiling and gain and loss of function experiments, we identified the matricellular protein CYR61 and aVb5 integrin, as proteins cooperating to mediate these effects. Inhibition of aVb5 integrin suppressed invasion and metastasis induced by CYR61 and attenuated metastasis of tumors growing within a pre-irradiated field. These results represent a conceptual advance to the understanding of the tumor bed effect and identify CYR61 and aVb5 integrin as proteins that co-operate to mediate metastasis. They also indicate aV integrin inhibition a potential therapeutic approach for preventing metastasis in patients at risk for post-radiation recurrences, which can be promptly tested in the clinic.

Publication Title

CYR61 and alphaVbeta5 integrin cooperate to promote invasion and metastasis of tumors growing in preirradiated stroma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE8818
Expression changes in intestinal crypts upon deletion of beta-catenin
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The Wnt signaling pathway is deregulated in over 90% of human colorectal cancers. Catenin, the central signal transducer of the Wnt pathway, can directly modulate gene expression by interacting with transcription factors of the TCF/LEF-family. In the present study we investigate the role of Wnt signaling in the homeostasis of intestinal epithelium using tissue-specific, inducible beta-catenin gene ablation in adult mice. Block of Wnt/beta-catenin signaling resulted in rapid loss of transient-amplifying cells and crypt structures. Importantly, intestinal stem cells were induced to terminally differentiate upon deletion of beta-catenin resulting in a complete block of intestinal homeostasis and fatal loss of intestinal function. Transcriptional profiling of mutant crypt mRNA isolated by laser capture micro dissection confirmed those observations and allowed to identify genes potentially responsible for the functional preservation of intestinal stem cells.

Publication Title

Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE58644
The prognostic ease and difficulty of invasive breast carcinoma
  • organism-icon Homo sapiens
  • sample-icon 319 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Breast carcinoma (BC) have been extensively profiled by high-throughput technologies for over a decade, and broadly speaking, these studies can be grouped into those that seek to identify patient subtypes (studies of heterogeneity) or those that seek to identify gene signatures with prognostic or predictive capacity. The shear number of reported signatures has led to speculation that everything is prognostic in BC. Here we show that this ubiquity is an apparition caused by a poor understanding of the inter- relatedness between subtype and the molecular determinants of prognosis. Our approach constructively shows how to avoid confounding due to a patient's subtype, clinicopathological or treatment profile. The approach identifies patients who are predicted to have good outcome at time of diagnosis by all available clinical and molecular markers, but who experience a distant metastasis within five years. These inherently difficult patients (~7% of BC) are prioritized for investigations of intra-tumoral heterogeneity.

Publication Title

The prognostic ease and difficulty of invasive breast carcinoma.

Sample Metadata Fields

Age, Disease stage, Time

View Samples
accession-icon GSE38237
HDAC4 reduction: a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration
  • organism-icon Mus musculus
  • sample-icon 71 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

HDAC4 reduction: a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE60578
Regulatory logic of the coupled diurnal and feeding cycles in the mouse liver
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This study is a follow-up to GSE35790.

Publication Title

Transcriptional regulatory logic of the diurnal cycle in the mouse liver.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
accession-icon GSE38218
Gene expression data from cortex of 9w old WT, R6/2, HDAC4het and R6/2::HDAC4het mice
  • organism-icon Mus musculus
  • sample-icon 37 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Histone deacetylase (HDAC) 4 is a transcriptional repressor that contains a glutamine rich domain. We hypothesised that it may be involved in the molecular pathogenesis of Huntingtons disease (HD), a protein folding neurodegenerative disorder caused by an aggregation-prone polyglutamine expansion and transcriptional dysregulation. We found that HDAC4 interacts with huntingtin in a polyglutamine-length dependent manner and co-localises with cytoplasmic inclusions. We show that HDAC4 reduction delayed cytoplasmic aggregate formation, restored Bdnf transcript levels and rescued neuronal and cortico-striatal synaptic function in HD mouse models. This was accompanied by an improvement in motor co-ordination, neurological phenotypes and increased lifespan. Surprisingly, HDAC4 reduction had no effect on global transcriptional dysfunction and did not modulate nuclear huntingtin aggregation. Our results define a crucial role for cytoplasmic aggregation in the molecular pathology of HD. HDAC4 reduction presents a novel strategy for targeting huntingtin aggregation which may be amenable to small molecule therapeutics.

Publication Title

HDAC4 reduction: a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE38219
Gene expression data from cortex of 15w old WT, R6/2, HDAC4het and R6/2::HDAC4het mice
  • organism-icon Mus musculus
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Histone deacetylase (HDAC) 4 is a transcriptional repressor that contains a glutamine rich domain. We hypothesised that it may be involved in the molecular pathogenesis of Huntingtons disease (HD), a protein folding neurodegenerative disorder caused by an aggregation-prone polyglutamine expansion and transcriptional dysregulation. We found that HDAC4 interacts with huntingtin in a polyglutamine-length dependent manner and co-localises with cytoplasmic inclusions. We show that HDAC4 reduction delayed cytoplasmic aggregate formation, restored Bdnf transcript levels and rescued neuronal and cortico-striatal synaptic function in HD mouse models. This was accompanied by an improvement in motor co-ordination, neurological phenotypes and increased lifespan. Surprisingly, HDAC4 reduction had no effect on global transcriptional dysfunction and did not modulate nuclear huntingtin aggregation. Our results define a crucial role for cytoplasmic aggregation in the molecular pathology of HD. HDAC4 reduction presents a novel strategy for targeting huntingtin aggregation which may be amenable to small molecule therapeutics.

Publication Title

HDAC4 reduction: a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact