refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 117 results
Sort by

Filters

Technology

Platform

accession-icon GSE6565
Fetal cartilage selective genes identified in a genome-scale analysis
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Cartilage plays a fundamental role in the development of the human skeleton. Early in embryogenesis, mesenchymal cells condense and differentiate to chondrocytes to shape the early skeleton. Subsequently, the cartilage anlagen differentiate to form the growth plates, which are responsible for linear bone growth, and the articular chondrocytes, which facilitate joint function. However, despite the multiplicity of roles of cartilage during human fetal life, surprisingly little is known about its transcriptome. To address this, a whole genome microarray expression profile was generated using RNA isolated from 18-22 week human distal femur fetal cartilage and compared with a database of control normal human tissues aggregated at UCLA, termed CELSIUS. From the wealth of data, 161 cartilage-selective genes were identified, defined as genes significantly expressed in cartilage with low expression and little variation across a panel of 34 non-cartilage tissues. Among these 161 genes were cartilage-specific genes such as collagen genes and 25 genes which have been associated with skeletal phenotypes in humans and/or mice. Many of the other cartilage-selective genes do not have established roles in cartilage or are novel, unannotated genes. Quantitative RT-PCR confirmed the unique pattern of gene expression observed by microarray analysis. Defining the gene expression pattern for cartilage has identified new genes that may contribute to human skeletogenesis as well as provided further candidate genes for skeletal dysplasias. The data suggest that fetal cartilage is a complex and transcriptionally active tissue and demonstrate that the set of genes selectively expressed in the tissue has been greatly underestimated.

Publication Title

Cartilage-selective genes identified in genome-scale analysis of non-cartilage and cartilage gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE57856
TOX3 is Expressed in Mammary ER Positive Epithelial Cells and Regulates a Subset of ER Target Genes in a Ligand-Independent Manner in Luminal Breast Cancer
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

To assess how the TOX3 nuclear protein can modulate gene expression in luminal epithelial cells, MCF7 cells were transfected with a TOX3 expression vector or vector control. In both instances, GFP was coexpressed, allowing isolation of transfected cells by flow cytometry before transcriptome analysis. Experiments were carried out under estrogen depleted conditions, and cells isolated 48 hours after transfection.

Publication Title

TOX3 is expressed in mammary ER(+) epithelial cells and regulates ER target genes in luminal breast cancer.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE89133
The TNF family member TL1A induces IL-22 secretion in committed human TH17 cells via IL-9 induction
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

TL1A contributes to the pathogenesis of several chronic inflammatory diseases, including Inflammatory Bowel Diseases by enhancing TH1, TH17, and TH2 responses. TL1A mediates a strong co-stimulation of these TH subsets particularly of mucosal CCR9+ T cells. However, the signaling pathways that TL1A induces in different TH subsets are incompletely understood. Here, we investigated the function of TL1A on human TH17 cells. TL1A together with TGF- IL-6, and IL-23 enhanced the secretion of IL-17 and IFN- from human CD4+ memory T cells. TL1A induced the expression of the transcription factors BATF and T-bet that correlated with the secretion of IL-17 and IFN-. In contrast, TL1A alone induced high levels of IL-22 in memory CD4+ T cells and committed TH17 cells. However, TL1A did not enhance expression of IL-17A in TH17 cells. Expression of the transcription factor aryl hydrocarbon receptor that regulates expression of IL-22 was not affected by TL1A. We performed transcriptome analysis of TH17 cells to determine genes that are transcriptionally regulated by TL1A. transcriptome analysis revealed increased expression of IL-9 in response to TL1A.

Publication Title

The TNF family member TL1A induces IL-22 secretion in committed human T<sub>h</sub>17 cells via IL-9 induction.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE11100
Dendritic Cell Vaccine against Glioblastoma Multiforme Patients
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Human Glioblastoma Multiforme tumors taken before dendritic cell vaccination, the recurrent tumors taken after vaccination and control GBM tumors from non vaccinated patients.

Publication Title

T cells enhance stem-like properties and conditional malignancy in gliomas.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE97549
Global microarray analysis of ONECUT2 transcription factor overexpression in human prostate cancer cells
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Treatment of prostate cancer by hormone suppression leads to the appearance of aggressive variants with variable or no dependence on the androgen receptor. Here we show that the developmental transcription factor, ONECUT2, is a master regulator of the AR network that is highly active in castration-resistant prostate cancer (CRPC).

Publication Title

ONECUT2 is a targetable master regulator of lethal prostate cancer that suppresses the androgen axis.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE11420
Microarray of Mouse Brain Tumors grown from injections of GL26 cell line
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

RNA was extracted from the tumors that grew in the brains of mice that were injected with the GL26 cell line. RNA from GL26 cells was also taken. The chip used for all was an affymetrix mouse genome chip (GPL1261). This is the mouse model compliment to a human experiment in which the human chip was used for GBM tumors.

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE52488
Gene expression profiling regulated by PDGF in pBSMCs
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

To explore global molecular changes in smooth muscle in response to PDGFR activation, primary human bladder smooth muscle cells were treated with 1 nM PDGF-BB (hereafter PDGF) for 0, 4 or 24 h. Total RNA were prepared, and analyzed using expression profiling, and subjected to bioinformatic and functional interrogation.

Publication Title

Integration of proteomic and transcriptomic profiles identifies a novel PDGF-MYC network in human smooth muscle cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE102967
Transcriptome analysis of Blimp1-sufficient (Ctrl) and Blimp1-deficient (CKO) CD4+ Foxp3+ regulatory (Treg) and Foxp3- effector (Teff) T cells
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Comparative analysis of regulation of gene expression by Blimp1 in regulatory and effector CD4+ T cells. The hypothesis tested in the present study was that Blimp1 differentially regualte gene expression in different T cell subsets. Results provide important information of mechanisms underlying regulation of gene expression by Blimp1 in T cells

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE97548
ONECUT2 inhibition by chemical compound treatment in 22Rv1
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To evaluate the specificity for inhibition of expression of OC2 target genes we generated microarray data of 22Rv1 cells treated for 4, 6 and 16 hours with the small molecule inhibitor.

Publication Title

ONECUT2 is a targetable master regulator of lethal prostate cancer that suppresses the androgen axis.

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
accession-icon GSE75701
Human expression data from iPSCs, motor neurons derived from iPSCs and ESCs, and fetal spinal cords
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We compare transcriptomic profiles of human induced pluripotent stem cells (iPSCs), motor neurons (MNs) in vitro differentiated from iPSCs or human ESCs containing a HB9::GFP reporter for MNs, and human fetal spinal cords.

Publication Title

ALS disrupts spinal motor neuron maturation and aging pathways within gene co-expression networks.

Sample Metadata Fields

Sex

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact