refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 29 results
Sort by

Filters

Technology

Platform

accession-icon GSE29072
Zebularine effect on mouse embryonic stem cells manifested as cardiod-myogenic potential: testable hypothesis generation using microarray data
  • organism-icon Mus musculus
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Lineage commitment during Embryonic Stem Cells (ESCs) differentiation is controlled not only by a gamut of transcription factors but also by epigenetic events, mainly histone deacetylation and promoter DNA methylation. Moreover, the DNA demethylation agent 5-Aza-2-deoxycytidine (AzadC) has been widely described in the literature as an effective chemical stimulus used to promote cardiomyogenic differentiation in various stem cell types; however, its toxicity and instability complicate its use. Thus, the purpose of this study was to examine the effects of zebularine, a stable and non-toxic DNA cytosine methylation inhibitor, on ESCs differentiation. Herein are the Affymetrix Expression data obtained from RNA of murine ESCs treated with zebularine.

Publication Title

Zebularine regulates early stages of mESC differentiation: effect on cardiac commitment.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE11628
Wnt & LIF signalling in mESC
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The molecular processes underlying the properties of ESC are yet unknown even when it's well established that LIF/STAT3 is neccesary for the maintenance of pluripotency. Other pathways as Wnt are may be implicated in the regulation of the biological mechanisms in mESC. Work model: D3-ES cultivated with or without LIF and treated with chronic (7 days) low doses (50nM) of GSK3 inhibitor (lithium).

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE62257
CHD8 controls progestin-dependent gene expression in T47D cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

CHD8 is an ATPase of the SNF2 family involved in ATP-dependent nucleosome remodeling. Our data indicate that in the presence of progestin (R5020), a progesterone receptor (PR) agonist, CHD8 is recruited to a number of PR enhancers. To correlate CHD8 binding sites with CHD8-regulated gene expression we performed a transcriptomic analysis of T47D-MTVL cells transfected with a control siRNA or a siRNA specifically targeting CHD8 and stimulated during 6h with progestin or vehicle. CHD8-dependent genes presented lower induction of up-regulated genes and lower repression of down-regulated genes, indicating that CHD8 is required for progesterone-dependent regulation of a subset of genes.

Publication Title

The chromatin Remodeler CHD8 is required for activation of progesterone receptor-dependent enhancers.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE69307
Expression data in histone-depleted cells [gene-level]
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

How chromatin controls transcription elongation and splicing is an open question. Here we determine the transcriptomic changes of cells partially depleted of core histones. For that we construct a cell line with Doxycycline-controlled levels of the histone regulatory protein SLBP (HCT-shSLBP). HCT-shSLBP is derived from the human colon cancer cell line HCT116.

Publication Title

Defective histone supply causes changes in RNA polymerase II elongation rate and cotranscriptional pre-mRNA splicing.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE27091
Expression profile of HeLa THOC1-depleted stable cell lines (HeTH-4)
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

THO/TREX is an eukaryotic conserved complex with a role at the interface between transcription and mRNP biogenesis/export that in yeast has been shown to play an important role in preventing transcription-associated genome instability. However, whereas a role of mammalian THO/TREX in mRNA processing and export seems clear, a role on either transcription or genome stability is still being argued. In this work we show, by microarray analysis of gene expression, that THO depletion in human cell lines has a global effect on transcription, with a significant impact on genes involved in transcription and DNA metabolism.

Publication Title

No associated publication

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE48926
Expression data from C33-A cell line
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

C33-A is a Homo sapiens cervix carcinoma cell line. In this experiment we determine the level of gene expression under exponentially growing conditions.

Publication Title

The chromatin remodeller CHD8 is required for E2F-dependent transcription activation of S-phase genes.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE29420
Expression data of pmr1 mutants
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

The yeast PMR1 (ATP2C1) gene codes for the eukaryotic prototype of a high affinity P-type ATPase required for Ca2+/Mn2+ transport into the Golgi. Cells lacking PMR1 exhibit multiple genetic interactions with genes involved in DNA recombination and replication, a fact that is not yet understood. We find that deletion of PMR1 causes a delay in DNA replication initiation, progression and G2/M transition and induces the transcriptional up-regulation of genes involved in cell cycle regulation, including CLB5 and SWE1. Interestingly, pmr1 clb5 double mutants exhibit a dramatic delay in DNA replication and increased DNA breakage, while endoreplication and the formation of multi-nucleated, giant yeast is observed in pmr1 swe1 cells. Because these phenotypes can be attributed to impeded Mn2+-pump function, we provide a model in which Mn2+ interferes with Mg2+ in the nucleus, and vice versa, Mg2+ interferes with Mn2+ in the Golgi. Consequently, cell cycle progression is challenged by aberrant catalytic activities of enzymes involved in replication and protein glycosylation.

Publication Title

Impaired manganese metabolism causes mitotic misregulation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE21571
In the absence of H2A.Z, the SWR1 histone replacement complex causes genetic instability, stress and genome transcription misregulation
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

The SWR1 complex replaces the canonical histone H2A with the variant H2A.Z (Htz1 in yeast) at specific chromatin regions. This dynamic alteration in nucleosome structure provides a molecular mechanism to regulate transcription. Here we analysed the transcription profiles of single and double mutants and wild-type cells by whole-genome microarray analysis. Our results indicate that genome-wide transcriptional misregulation in htz1 can be partially or totally suppressed if SWR1 is not formed (swr1), if it forms but cannot bind to chromatin (swc2), or if it binds to chromatin but has no histone replacement activity (swc5). These results suggest that in htz1 the nucleosome remodelling activity of SWR1 affects chromatin integrity because of an attempt to replace H2A with Htz1 in the absence of the latter.

Publication Title

The SWR1 histone replacement complex causes genetic instability and genome-wide transcription misregulation in the absence of H2A.Z.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE18994
Expression profile of ypr045c mutant
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

We report a new protein complex with a role in transcription elongation that is formed by Ypr045c (Thp3) and the Csn12 component of the COP9-signalosome. Thp3-Csn12 is recruited to transcribed genes. Their mutations suppress the gene expression defects of mutants of the THO complex involved in mRNP biogenesis and export and show defects in mRNA accumulation. In vivo transcription elongation impairment of thp3 mutants is shown by reduction of RNAPII recruitment throughout an active gene and in transcript run on analysis performed in G-less systems. This new complex establishes a novel link between transcription and mRNA processing.

Publication Title

New suppressors of THO mutations identify Thp3 (Ypr045c)-Csn12 as a protein complex involved in transcription elongation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE56703
Microarray and ChIP-chip analyses of the THSC/TREX-2 complex
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A genome-wide function of THSC/TREX-2 at active genes prevents transcription-replication collisions.

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact