refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 12257 results
Sort by

Filters

Technology

Platform

accession-icon GSE143559
Transcriptomic changes during senescence of leaves and fine roots of Populus trichocarpa
  • organism-icon Populus trichocarpa
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Poplar Genome Array (poplar)

Description

We studied the changes that occur in gene transcription during seasonal senescence in Populus trichocarpa pioneer leaves and fine roots. Plant senescence is a strictly regulated physiological process that allows relocating of valuable nutrients from senescent tissues before death. It might be induced by internal or external factors and among them, phytohormones play an undoubtedly significant role. Senescence was extensively studied in leaves, but the aging of other ephemeral organs, located underground, and its drivers are still poorly understood. We focused on collective results to fill in the knowledge gap about senescence of fine, absorptive roots and leaves in order to check if there are universal mechanisms involved during plant organ senescence. Transcriptional profiling was conducted with the use of microarrays to identify genes involved in developmental PCD. Samples were collected three times during a growth season. The first collection was considered as a control and was collected in early summer (July 7–15) when leaves and the root system were fully developed and functional. The second group of leaf and root samples were harvested in early autumn (October 1–7) when chlorophyll levels in leaves had decreased by approximately 40% and when fine roots had changed in color from white to brown. The third group of samples were harvested in the middle of autumn (November 2–9) when chlorophyll levels in leaves decreased by approximately 65% and fine roots were dark brown or black color. Our results reveal the important role of phytohormones in regulating the senescence of both studied organs. The transcriptomic analyses showed significant changes in gene expression that are associated with phytohormones, especially with ABA and jasmonates. We conclude that phytohormonal regulation of senescence in roots and leaves is organ-specific. In roots, phytohormones are involved indirectly in regulation of senescence by increasing tolerance for cold or resistance for pathogens, whereas such correlation was not observed in leaves.

Publication Title

Allies or Enemies: The Role of Reactive Oxygen Species in Developmental Processes of Black Cottonwood (<i>Populus trichocarpa</i>).

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE101508
Genome-wide inhibition of pro-atherogenic gene expression by multi-STAT targeting compounds as a novel treatment strategy of CVD
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Cardiovascular diseases (CVD), including atherosclerosis, are globally the leading cause of death. Key factors contributing to onset and progression of atherosclerosis and plaque development include the pro-infslammatory cytokines Interferon (IFN) and IFN and the Pattern Recognition Receptor (PRR) Toll-like receptor 4 (TLR4). Together, they trigger activation of members of the Signal Transducer and Activator of Transcription (STAT) family. Searches for STAT3-targeting compounds, exploring the pTyr-SH2 interaction area of STAT3, yielded many small molecules, including STATTIC and STX-0119. However, many of these inhibitors do not seem STAT-specific. We hypothesized that non-specific STAT-inhibitors that simultaneously block STAT1, STAT2 and STAT3 activity and pro-inflammatory target gene expression may be a promising avenue for the treatment of CVD. We developed a pipeline approach combining comparative in silico docking of multiple STAT-SH2 models on multi-million Clean Lead and Clean Drug-Like libraries with in vitro STAT inhibition validation, as a novel STAT-inhibitory selection strategy. This approach allowed us to identify a new type of non-specific STAT inhibitor, C01L_F03 targeting the SH2 domain of STAT1, 2 and 3 with equal affinity. Moreover we observed a similar STAT cross-binding mechanism for STATTIC and STX-0119, leading to genome-wide inhibition of pro-atherogenic gene expression. Consequently, a multi-STAT inhibitory strategy was applied to inhibit endothelial cell (EC) migration, leukocyte adhesion to ECs and impairment of aortic ring contractility under inflammatory conditions. Together, this implicates that multi-STAT inhibition could provide a powerfull approach for the success of combating vascular inflammation in CVD

Publication Title

No associated publication

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE24427
Expression data of multiple sclerosis patients receiving subcutaneous Interferon-beta-1b therapy [U133 A and B]
  • organism-icon Homo sapiens
  • sample-icon 250 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

The purpose of this study was to characterize the transcriptional effects induced by subcutaneous IFN-beta-1b treatment (Betaferon, 250 g every other day) in patients with relapsing-remitting form of multiple sclerosis (MS).

Publication Title

Long-term genome-wide blood RNA expression profiles yield novel molecular response candidates for IFN-beta-1b treatment in relapsing remitting MS.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE86034
MicroRNA miR-92a-2 targets TFPI2 to ameliorate oxidative stress of the hypoxia neuron
  • organism-icon Rattus norvegicus
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina ratRef-12 v1.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE45516
Expression data from human Huntington fibroblasts
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gene expression profile comparison from fibroblasts of Huntington individuals and normal ones

Publication Title

Gene expression profile in fibroblasts of Huntington's disease patients and controls.

Sample Metadata Fields

Sex, Age, Specimen part, Disease

View Samples
accession-icon GSE85825
MicroRNA miR-92a-2 targets TFPI2 to ameliorate oxidative stress of the hypoxia neuron [mRNA]
  • organism-icon Rattus norvegicus
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina ratRef-12 v1.0 expression beadchip

Description

Comparison of the differential expression mRNA profiles from the brain cortex of hypoxia and normaixa rats by silica microarray chip

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE12066
Segregation of genes influencing skeletal phenotypes in congenic P/NP rats
  • organism-icon Rattus norvegicus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Bone mineral density and structure candidate gene analysis in alcohol-non-preferring (NP), alcohol-preferring (P), congenic NP (NP.P) and congenic P (P.NP) rats

Publication Title

Identification of genes influencing skeletal phenotypes in congenic P/NP rats.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11180
Genomic expression analysis of rat chromosome 4 for skeletal traits at femoral neck
  • organism-icon Rattus norvegicus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Femoral neck bone mineral density and structure candidate gene analysis in Fischer 344 (F344) and Lewis (LEW) rats

Publication Title

Genomic expression analysis of rat chromosome 4 for skeletal traits at femoral neck.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE48380
Ethanol exposure disrupts extraembryonic microtubule cytoskeleton and embryonic blastomere cell adhesion, producing epiboly and gastrulation defects
  • organism-icon Danio rerio
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

Gene expression was measured using microarrays in 8 hour postfertilization embryos, comparing control versus ethanol-treated (2 to 8 hours postfertilization) embryos. This experiment was performed to determine the gene expression changes that occur in response to ethanol treatment as a model of fetal alcohol spectrum disorder.

Publication Title

Ethanol exposure disrupts extraembryonic microtubule cytoskeleton and embryonic blastomere cell adhesion, producing epiboly and gastrulation defects.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE145574
Embryonic ethanol exposure alters expression of sox2 and other early transcripts in zebrafish, producing gastrulation defects
  • organism-icon Danio rerio
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

Ethanol exposure during prenatal development causes fetal alcohol spectrum disorder (FASD), the most frequent preventable birth defect and neurodevelopmental disability syndrome. The molecular targets of ethanol toxicity during development are poorly understood. Developmental stages surrounding gastrulation are very sensitive to ethanol exposure. To understand the effects of ethanol on early transcripts during embryogenesis, we treated zebrafish embryos with ethanol during pre-gastrulation period and examined the transcripts by Affymetrix GeneChip microarray before gastrulation. We identified 521 significantly dysregulated genes, including 61 transcription factors in ethanol-exposed embryos. Sox2, the key regulator of pluripotency and early development was significantly reduced. Functional annotation analysis showed enrichment in transcription regulation, embryonic axes patterning, and signaling pathways, including Wnt, Notch and retinoic acid. We identified all potential genomic targets of 25 dysregulated transcription factors and compared their interactions with the ethanol-dysregulated genes. This analysis predicted that Sox2 targeted a large number of ethanol-dysregulated genes. A gene regulatory network analysis showed that many of the dysregulated genes are targeted by multiple transcription factors. Injection of sox2 mRNA partially rescued ethanol-induced gene expression, epiboly and gastrulation defects. Additional studies of this ethanol dysregulated network may identify therapeutic targets that coordinately regulate early development.

Publication Title

Embryonic ethanol exposure alters expression of sox2 and other early transcripts in zebrafish, producing gastrulation defects.

Sample Metadata Fields

Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact