refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1682 results
Sort by

Filters

Technology

Platform

accession-icon GSE4766
Decline of Nucleotide Excision Repair Capacity in Aged Caenorhabditis elegans
  • organism-icon Caenorhabditis elegans
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

We used gene expression profiling to address several specific questions that arose in a study of repair of ultraviolet C radiation in C elegans, as well as to generate hypotheses regarding the possible mechanism(s) of decreased DNA repair observed in old adults in that study. This analysis was performed in order to analyze gene expression in the strain (JK1107) and experimental conditions that we used for our DNA repair studies.

Publication Title

Decline of nucleotide excision repair capacity in aging Caenorhabditis elegans.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP098713
Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The accumulation of irreparable cellular damage restricts healthy lifespan after acute stress or natural aging. Senescent cells are thought to impair tissue function and their genetic clearance can successfully delay features of aging. Identifying how senescent cells avoid apoptosis would allow for the prospective design of anti-senescence compounds to address whether homeostasis can be restored. Here, we identify FOXO4 as a pivot in the maintenance of senescent cell viability. We designed a FOXO4-based peptide which selectively competes for interaction of FOXO4 with p53. In senescent cells, this results in p53 nuclear exclusion and cell-intrinsic apoptosis. Importantly, under conditions where it was well tolerated, the FOXO4 peptide restored liver function after Doxorubicin-induced chemotoxicity. Moreover, in fast aging XpdTTD/TTD, as well as in naturally aged mice the FOXO4 peptide could counteract the loss of fitness, fur density and renal function. Thus, it is possible to therapeutically target senescent cells and thereby effectively counteract senescence-associated loss of tissue homeostasis. Overall design: mRNA expression levels are compared between IR-induced senescent and proliferating IMR90 cells in triplicate

Publication Title

Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP189843
Engram-specific transcriptome profiling of contextual memory consolidation
  • organism-icon Mus musculus
  • sample-icon 34 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Sparse populations of neurons in the dentate gyrus (DG) of the hippocampus are causally implicated in the encoding of contextual fear memories. However, engram-specific molecular mechanisms underlying memory consolidation remain largely unknown. Here we perform unbiased RNA sequencing of DG engram neurons 24h after contextual fear conditioning to identify transcriptome changes specific to memory consolidation. DG engram neurons exhibit a highly distinct pattern of gene expression, in which CREB-dependent transcription features prominently (P=6.2x10-13), including Atf3 (P=2.4x10-41), Penk (P=1.3x10-15), and Kcnq3 (P=3.1x10-12). Moreover, we validate the functional relevance of the RNAseq findings by establishing the causal requirement of intact CREB function specifically within the DG engram during memory consolidation, and identify a novel group of CREB target genes involved in the encoding of long-term memory. Overall design: Biological replicates: Fear conditioned: n=14, No shock controls: n=4, Home cage controls:n=3. The contents 10 dVenus+ and 10 dVenus- cells were aspirated from each animal (biological replicate)

Publication Title

Engram-specific transcriptome profiling of contextual memory consolidation.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon SRP049826
Whole-transcriptome analysis of endothelial-to-hematopoietic stem cell transition
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Hematopoietic stem cells (HSCs) are generated via a natural transdifferentiation process known as endothelial-to-hematopoietic cell transition (EHT). Due to small numbers of embryonal arterial cells undergoing EHT and the paucity of markers to enrich for hemogenic endothelial cells, the genetic program driving HSC emergence is largely unknown. Here, we use a highly sensitive RNAseq method to examine the whole transcriptome of small numbers of enriched aortic HSCs (CD31+cKit+Ly6aGFP+), hemogenic endothelial cells (CD31+cKit-Ly6aGFP+) and endothelial cells (CD31+cKit-Ly6aGFP-). Overall design: Comparison of mRNA profiles of endothelial cells, hemogenic endothelial cells, and hematopoietic stem cells generated by deep-sequencing of sorted populations from pool of embryos, in triplicate.

Publication Title

Whole-transcriptome analysis of endothelial to hematopoietic stem cell transition reveals a requirement for Gpr56 in HSC generation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE29632
Effect of Nrf2 deletion in postnatal lung development and BPD phenotype in newborn mice
  • organism-icon Mus musculus
  • sample-icon 41 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Background: Nrf2 is an essential cytoprotective transcription factor. However, association of Nrf2 in organ development and neonatal disease is rarely examined. Hyperoxia exposure to newborn rodents generates pulmonary phenotypes which resemble bronchopulmonary dysplasia (BPD) of prematurity.

Publication Title

Targeted deletion of nrf2 impairs lung development and oxidant injury in neonatal mice.

Sample Metadata Fields

Treatment

View Samples
accession-icon SRP127016
Thyroid State Regulates Gene Expression in Human Whole Blood Cells
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Context: Despite the well-recognized clinical features due to insufficient or excessive thyroid hormone (TH) levels in humans, it is largely unknown which genes are regulated by TH in human tissues. objective: To study the effect of TH on human gene expression profiles in whole blood, mainly consisting of TRa-expressing cells. Methods: We performed next-generation RNA sequencing on whole blood samples from 8 athyroid patients (4 females) on and after 4 weeks off levothyroxine replacement. Gene expression changes were analyzed through paired differential expression analysis and confirmed in a validation cohort. Weighted gene co-expression network analysis (WGCNA) was applied to identify thyroid state-related networks. Results: We detected 486 differentially expressed (DE) genes (fold-change above 1.5; multiple testing corrected P-value <0.05), of which 76 % were positively and 24 % were negatively regulated. Gene ontology (GO) enrichment analysis revealed that 3 biological processes were significantly overrepresented of which the process translational elongation showed the highest fold enrichment (7.3 fold, P=1.8 x 10-6). Comparative transcriptome analysis revealed significant overlap with DE-genes in muscle samples upon different thyroid state (1.7-fold enrichment; P=0.02). WGCNA analysis independently identified various gene clusters that correlated with thyroid state. Further GO-analysis suggested that thyroid state regulates platelet function. Conclusions: Changes in thyroid state regulate numerous genes in human whole blood, predominantly TRa-expressing leukocytes. In addition, TH may regulate gene expression in platelets. Whole blood samples might potentially be used as a proxy for other TRa-expressing tissues in humans. Overall design: Transcriptome profiling (RNA-Seq) of 8 thyroidectomized human whole blood samples, sequenced first in hypothyroid state and after levothyroxine supplementation sequenced in a hypothyroid (mild thyreotoxic state) state on a Illumina HiSeq 2500 system.

Publication Title

Thyroid State Regulates Gene Expression in Human Whole Blood.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE23371
Transcriptomes of monocyte-derived DCs stimulated with various compounds
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Little is known about the early transcriptional events in innate immune signaling in immature and tolerogenic monocyte-derived dendritic cells (DCs), the professional antigen-presenting cells of our immune system. TLR ligands usually induce a proinflammatory transcriptional response, whereas IL10 and/or dexamethasone induce a more tolerogenic phenotype.

Publication Title

MicroRNA genes preferentially expressed in dendritic cells contain sites for conserved transcription factor binding motifs in their promoters.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE32357
Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

Resveratrol is a naturally occurring compound that profoundly affects energy metabolism and mitochondrial function and serves as a calorie restriction mimetic, at least in animal models of obesity. Here we treated 10 healthy, obese men with placebo and 150 mg/day resveratrol in a randomized double-blind cross-over study for 30 days. Resveratrol supplementation significantly reduced sleeping- and resting metabolic rate. In muscle, resveratrol activated AMPK, increased SIRT1 and PGC-1alpha protein levels, increased citrate synthase activity, and improved muscle mitochondrial respiration on a fatty acid-derived substrate. Furthermore, resveratrol elevated intramyocellular lipid levels, and decreased intrahepatic lipid content, circulating glucose, triglycerides, alanine-aminotransferase, and inflammation markers. Systolic blood pressure dropped and HOMA index improved after resveratrol. In the postprandial state, adipose tissue lipolysis and plasma fatty acid and glycerol decreased. In conclusion, we demonstrate that 30 days of resveratrol supplementation induces profound metabolic changes in obese subjects, mimicking the effects of calorie restriction.

Publication Title

Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE63096
Malnutrition-associated hepatic steatosis and ATP depletion is caused by peroxisomal and mitochondrial dysfunction and rescued by fenofibrate
  • organism-icon Rattus norvegicus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.1 ST Array (ragene11st)

Description

Severe malnutrition in young children is associated with signs of hepatic dysfunction such as steatosis and hypoalbuminemia, but its etiology is unknown. To investigate the underlying mechanisms of hepatic dysfunction we used a rat model of malnutrition by placing weanling rats on a low protein or control diet (5% or 20% of calories from protein, respectively) for four weeks. Low protein diet-fed rats developed hypoalbuminemia and severe hepatic steatosis, consistent with the human phenotype. Hepatic peroxisome content was decreased and metabolomic analysis indicated impaired peroxisomal function. Loss of peroxisomes was followed by accumulation of dysfunctional mitochondria and decreased hepatic ATP levels. Fenofibrate supplementation restored hepatic peroxisome abundance and increased mitochondrial fatty acid -oxidation capacity, resulting in reduced steatosis and normalization of ATP and plasma albumin levels. These findings provide important insight into the metabolic

Publication Title

Malnutrition-associated liver steatosis and ATP depletion is caused by peroxisomal and mitochondrial dysfunction.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE78699
Different pathogenic stimuli induce specific metabolic rewiring in human monocytes
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

Recent studies have demonstrated that upon encountering a pathogenic stimulus, robust metabolic rewiring of immune cells occurs. A switch away from oxidative phosphorylation to glycolysis, even in the presence of sufficient amounts of oxygen (akin the Warburg effect), is typically observed in activated innate and adaptive immune cells and is thought to accommodate adequate inflammatory responses. However, whether the Warburg effect is a general phenomenon applicable in human monocytes exposed to different pathogenic stimuli is unknown. Our results using human monocytes from healthy donors demonstrate that the Warburg effect only holds true for TLR4 activated cells. Although activation of other TLRs leads to an increase in glycolysis, no reduction or even an enhancement in oxidative phosphorylation is observed. Moreover, specific metabolic rewiring occurs in TLR4 vs. TLR2 stimulated cells characterized by altered gene expression profiles of pathways related to metabolism, changes in spare respiratory capacity of the cells and differential regulation of mitochondrial enzyme activity. Similarly, results from ex vivo and in vivo studies demonstrate metabolic rewiring of immune cells that is highly dependent on the type of pathogenic stimulus. Although the Warburg effect is observed in human monocytes after TLR4 activation, we propose that this typical metabolic response is not applicable to other inflammatory signalling routes including TLR2 in human monocytes. Instead, each pathogenic stimulus and subsequently activated inflammatory signalling cascade induces specific metabolic rewiring of the immune cell to accommodate an appropriate response.

Publication Title

Microbial stimulation of different Toll-like receptor signalling pathways induces diverse metabolic programmes in human monocytes.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact