refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1566 results
Sort by

Filters

Technology

Platform

accession-icon SRP133768
Large-scale expansion of human iPSC-derived skeletal muscle cells for disease modeling and cell-based therapeutic strategies
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Although skeletal muscle cells can be generated from human iPSCs, transgene-free protocols include only limited options for their purification and expansion. In this study we found that FACS-purified myogenic progenitors generated from healthy controls and Pompe disease iPSCs can be robustly expanded as much as 5 x 1011 fold. At all steps during expansion, cells could be cryopreserved or differentiated into myotubes with a high fusion index. In vitro, cells were amenable to maturation into striated and contractile myofibers. Insertion of the acid alpha glucosidase cDNA into the AAVS1 locus in iPSCs using CRISPR/cas9 prevented glycogen accumulation in myotubes generated from a patient with classic infantile Pompe disease. In vivo, the expression of human-specific nuclear and sarcolemmar antigens indicated that myogenic progenitors engraft into murine muscle to form human myofibers. This protocol is useful for modeling of skeletal muscle disorders and for using patient-derived, gene-corrected cells to develop cell-based strategies. Overall design: Myogenic progenitors were expanded for ~15 days and harvested either in proliferation conditions or after 4 days of differentiation as described previously (van der Wal et al., 2017b). RNA was extracted using the RNeasy minikit with DNAse treatment (Qiagen, Germantown, MD). Sequencing libraries were prepared using TruSeq Stranded mRNA Library Prep Kit (Illumina, San Diego, California, USA) according to the manufacturer's instructions. Libraries were sequenced on a HiSeq2500 sequencer (Illumina, San Diego, California, USA) in rapid-run mode according to the manufacturer's instructions. Reads 50 base-pairs in length were generated. The RNA-sequencing datasets listed in table S3 were downloaded and aligned with the datasets generated in this study using the 'new Tuxedo' pipeline (Pertea et al., 2016). The processed data file includes the analysis of 30 additonal Samples from other research groups, partly from GEO and partly from other sources such as ENCODE and ENA. The header table linked below lists the origin of the other Samples.

Publication Title

Large-Scale Expansion of Human iPSC-Derived Skeletal Muscle Cells for Disease Modeling and Cell-Based Therapeutic Strategies.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Subject

View Samples
accession-icon SRP161949
Profiling of gene expression using RNA-Seq in fibroblasts, iPSCs, iPSC-derived neurons and cells overexpressing Onecut transcription factors
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Remodeling of chromatin accessibility is necessary for successful reprogramming of fibroblasts to neurons. However, it is still not fully known which transcription factors can induce a neuronal chromatin accessibility profile when overexpressed in fibroblasts. To identify such transcription factors, we here used ATAC-sequencing to generate differential chromatin accessibility profiles between human fibroblasts and iNeurons, an in vitro neuronal model system obtained by overexpression of Neurog2 in induced pluripotent stem cells (iPSCs). We found that the ONECUT transcription factor sequence motif was strongly associated with differential chromatin accessibility between iNeurons and fibroblasts. All three ONECUT transcription factors associated with this motif (ONECUT1, ONECUT2 and ONECUT3) induced neuronal morphology and expression of neuronal genes within two days of overexpression in fibroblasts. We observed widespread remodeling of chromatin accessibility; in particular, we found that chromatin regions that contain the ONECUT motif were in- or lowly accessible in fibroblasts and became accessible after the overexpression of ONECUT1, ONECUT2 or ONECUT3. There was substantial overlap with iNeurons, still, many regions that gained accessibility following ONECUT overexpression were not accessible in iNeurons. Our study highlights the potential of ONECUT transcription factors for direct neuronal reprogramming. Overall design: Each RNA-Seq experiment was performed in duplicate (library constructed from different wells of the same cell line in the same cell culture experiment). Bclxl controls were generated for the overexpression. experiments.

Publication Title

ONECUT transcription factors induce neuronal characteristics and remodel chromatin accessibility.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE97010
The Impact of Acute Exposure to Cigarette Smoke on Airway Gene Expression
  • organism-icon Homo sapiens
  • sample-icon 126 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

BACKGROUND: We have previously reported gene expression changes in the bronchial airway epithelium of active chronic smokers. In this study, we investigate the effects of Acute Smoke Exposure (ASE) from cigarettes on airway epithelial gene expression. METHODS: Bronchial airway epithelial cell brushings were collected via fiberoptic bronchoscopy from 63 individuals without recent exposure to cigarette smoke (> 2 days), at baseline and at 24 hours after smoking three cigarettes. RNA from these samples was profiled on Affymetrix Human Gene 1.0 ST microarrays. Differential gene expression was assessed using linear modeling and compared to previous smoking-related gene-expression signatures using Gene Set Enrichment Analysis (GSEA). RESULTS: We identified 91 genes differentially expressed 24-hours after exposure to three cigarettes (FDR < 0.25). ASE induces genes involved in xenobiotic metabolism, oxidative stress, and inflammation; and represses genes involved in cilium morphogenesis, and cell cycle. Genes induced by in vivo ASE are concordantly altered by ASE in vitro. While many genes altered by ASE are altered similarly in the airway of chronic smokers, metallothionein genes were induced by ASE and suppressed among chronic smokers. Metallothioneins were also suppressed in the bronchial airway of current and former chronic smokers with lung cancer relative to those with benign disease. CONCLUSIONS: Acute exposure to as little as three cigarettes alters gene-expression in bronchial airway epithelium in a manner that largely resembles the changes seen in chronic active smokers. The difference in the short-term and long-term effects of smoking on metallothionein expression and its relationship to lung cancer requires further study given these enzymes role in responding to oxidative stress.

Publication Title

Impact of acute exposure to cigarette smoke on airway gene expression.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE13162
Expression data from postmortem human brain samples with and without FTLD-U
  • organism-icon Homo sapiens
  • sample-icon 56 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

FTLD-U is the most common pathological correlate of the neurodegenerative dementia frontotemporal dementia

Publication Title

Variations in the progranulin gene affect global gene expression in frontotemporal lobar degeneration.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP125173
Transcriptome-wide analysis of the RNA content of purified Nanoblades
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina HiSeq 2500

Description

Programmable nucleases have enabled rapid and accessible genome engineering in eukaryotic cells and living organisms. However, their delivery into target cells can be technically challenging when working with primary cells or in vivo. Using engineered murine leukemia virus-like particles loaded with Cas9/sgRNA ribonucleoproteins (“Nanoblades”), we were able to induce efficient genome-editing in cell lines and primary cells including human induced pluripotent stem cells, human hematopoietic stem cells and mouse bone-marrow cells. Transgene-free Nanoblades were also capable of in vivo genome-editing in mouse embryos and in the liver of injected mice. Nanoblades can be complexed with donor DNA for “all-in-one” homology-directed repair or programmed with modified Cas9 variants to mediate transcriptional up-regulation of target genes. Nanoblades preparation process is simple, relatively inexpensive and can be easily implemented in any laboratory equipped for cellular biology. Overall design: Virus-like particles were purified on a sucrose cushion. Total RNA was extracted using Trizol and fragmented to ~100 nucleotides and used as input for cDNA library preparation. PCR-amplified libraries were sequenced on the Hiseq2500 platform (Illumina)

Publication Title

Genome editing in primary cells and in vivo using viral-derived Nanoblades loaded with Cas9-sgRNA ribonucleoproteins.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE45627
MiR-221 mediated gene expression in human PCa cells
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

MiR-221 overexpression leads to activation of apoptosis, growth arrest and reduced invasivness in PCa cells. Interaction of miR-221 with potential target genes was analyzed by a genome wide expression profiling.. Regulation of selected genes and proteins identified in the gene array analysis was confirmed by Real Time RT-PCR assay (IRF1, IRF2 SOCS3, STAT1), and Western Blotting. In total, 282 genes were upregulated and 64 downregulated based on a more than 2-fold difference to untransfected PC-3 cells. Regulated genes are involved in apoptosis, hemostasis, oxidative stress response, tumorigenesis and inflammation. We confirmed dysregulation of IRF-2 SOCS3, STAT1,IRF9. These results indicate that miR-221 overexpression might lead to activation of the JAK/STAT pathway and downregulation of miR-221 might contribute to tumorigenesis in PCa cells.

Publication Title

Survival in patients with high-risk prostate cancer is predicted by miR-221, which regulates proliferation, apoptosis, and invasion of prostate cancer cells by inhibiting IRF2 and SOCS3.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP155493
Widespread RNA editing dysregulation in Autism Spectrum Disorders II
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Autism spectrum disorder (ASD) is a neurodevelopmental disease with complex heterogeneity and aberrations in multiple levels of neurobiology. Recently, our understanding of the molecular abnormalities in ASD has been greatly expanded through transcriptomic analyses of postmortem brains. However, a crucial molecular pathway involved in synaptic development, RNA editing, has not yet been studied on a genome-wide scale. Here we profiled the global patterns of adenosine-to-inosine (A-to-I) editing in a large cohort of ASD cortices and cerebella. Strikingly, we observed a global bias of hypoediting in ASD brains, common to different brain regions and involving many genes with critical neurological function. The large-scale RNA editing changes allowed us to reveal novel insights of RNA editing regulation. Through genome-wide protein-RNA binding analyses and detailed molecular assays, we show that the Fragile X proteins, FMRP and FXR1P, interact with ADAR protens and modulate A-to-I editing. Furthermore, we observed convergent patterns of RNA editing alterations between ASD and Fragile X syndrome, thus establishing RNA editing as a novel molecular link underlying these two highly related diseases. Our findings support a role for RNA editing dysregulation in ASD pathophysiology and highlight novel mechanisms for RNA editing regulation. Overall design: RNA-seq to examine RNA editing in Fragile X patients

Publication Title

Widespread RNA editing dysregulation in brains from autistic individuals.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE8505
Isolated adipocytes and stromo-vascular fraction (SVF) of subcutaneous and intraabdominal adipose tissue in mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Obesity is an epidemic health problem worldwide that impacts the risk and prognosis of many diseases. However, not all obese patients have the same risk of developing these disorders. Individuals with peripheral obesity, i.e., fat distributed subcutaneously, are at little or no risk of the common medical complications of obesity, whereas individuals with central obesity, i.e., fat accumulated in visceral depots, are prone to these complications.

Publication Title

Evidence for a role of developmental genes in the origin of obesity and body fat distribution.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon SRP062048
Yap and Taz regulate retinal pigment epithelial cell fate
  • organism-icon Danio rerio
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

The optic vesicle comprises a pool of bi-potential progenitor cells from which the retinal pigment epithelium (RPE) and neural retina fates segregate during ocular morphogenesis. Several transcription factors and signaling pathways have been shown to be important for RPE maintenance and differentiation, but an understanding of the initial fate specification and determination of this ocular cell type is lacking. We show that Yap/Taz-Tead activity is necessary and sufficient for optic vesicle progenitors to adopt RPE identity in zebrafish. A Teadresponsive transgene is expressed within the domain of the optic cup from which RPE arises, and Yap immunoreactivity localizes to the nuclei of prospective RPE cells. yap (yap1) mutants lack a subset of RPE cells and/or exhibit coloboma. Loss of RPE in yap mutants is exacerbated in combination with taz (wwtr1) mutant alleles such that, when Yap and Taz are both absent, optic vesicle progenitor cells completely lose their ability to form RPE. The mechanism of Yap dependent RPE cell type determination is reliant on both nuclear localization of Yap and interaction with a Tead co-factor. In contrast to loss of Yap and Taz, overexpression of either protein within optic vesicle progenitors leads to ectopic pigmentation in a dosagedependent manner. Overall, this study identifies Yap and Taz as key early regulators of RPE genesis and provides a mechanistic framework for understanding the congenital ocular defects of Sveinsson’s chorioretinal atrophy and congenital retinal coloboma. Overall design: 60 pooled eyes from 36 hpf wild type or vsx2:Gal4/dsRed:14xUAS:YapS87A embryos were pooled for one sample. Three wild type and three vsx2:Gal4/dsRed:14xUAS:YapS87A pools were analyzed for RNA.

Publication Title

Yap and Taz regulate retinal pigment epithelial cell fate.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE82311
Effect of Hsp70 inhibitor JG-98 on gene expression in mouse macrophages
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

JG-98 reduces migration of macrophages. We assessed how this compound affects expression of genes associated with motility and migration. A number of motility/migration genes were significantly downregulated.

Publication Title

Anticancer Effects of Targeting Hsp70 in Tumor Stromal Cells.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact