refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 25 results
Sort by

Filters

Technology

Platform

accession-icon GSE9832
Reprogramming of human somatic cells to pluripotency with defined factors
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Pluripotency, the capacity of embryo-derived stem cells to generate all tissues in the organism, can be induced in somatic cells by nuclear transfer into oocyte, fusion with embryonic stem cells, and for male germ cells by cell culture alone. Recently, murine fibroblasts have been reprogrammed directly to pluripotency by ectopic expression of four transcription factors (Oct4, Sox2, Klf4, and Myc) to yield induced Pluripotent Stem (iPS) cells. Using the same four factors, we have derived iPS cells from human embryonic stem cell-derived fibroblasts, primary human fetal cells, and diverse cells of neonatal and adult human origin. The human iPS cells manifest the colony morphology, gene expression patterns, and epigenetic characteristics of human Embryonic Stem (hES) cells, and form well-differentiated teratomas in immune-deficient mice. These data demonstrate that defined factors can reprogram human cells to pluripotency, and establish a method whereby patient-specific cells might be established in culture.

Publication Title

Reprogramming of human somatic cells to pluripotency with defined factors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7948
In vitro modeling of primordial germ cell development
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Transgenic StellaGFP ESCs were used to derive primordial germ cells during embryoid body (EB) differentiation, and microarry analysis used to compared FACS sorted Stella-positive cells of day 7 Ebs with the parental ESCs and Stella-negative cells of day 7 Ebs.

Publication Title

A role for Lin28 in primordial germ-cell development and germ-cell malignancy.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE37645
The gamma secretase inhibitor MRK-003 attenuates pancreatic cancer growth in preclinical models
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Pancreatic ductal adenocarcinoma (PDAC) is a nearly uniformly lethal malignancy, with most patients facing an adverse clinical outcome. Given the pivotal role of aberrant Notch signaling in the initiation and progression of PDAC, we investigated the effect of MRK-003, a potent and selective -secretase inhibitor, in preclinical PDAC models. We used a panel of human PDAC cell lines, as well as patient-derived PDAC xenografts, to determine whether pharmacological targeting of the Notch pathway could inhibit pancreatic tumor growth and potentiate gemcitabine sensitivity. In vitro, MRK-003 treatment downregulated the canonical Notch target gene Hes-1, significantly inhibited anchorage independent growth, and reduced the subset of CD44+CD24+ and aldehyde dehydrogenase (ALDH)+ cells that have been attributed with tumor initiating capacity. Ex vivo pretreatment of PDAC cells with MRK-003 in culture significantly inhibited the subsequent engraftment in immunocompromised mice. In vivo, MRK-003 monotherapy significantly blocked tumor growth in 5 of 9 (56%) patient-derived PDAC xenografts. Moreover, a combination of MRK-003 and gemcitabine showed enhanced antitumor effects compared to gemcitabine alone in 4 of 9 (44%) PDAC xenografts. Baseline gene expression analysis of the treated xenografts indicated that upregulation of nuclear factor kappa B (NFB) pathway components was associated with the sensitivity to single MRK-003, while upregulation in B-cell receptor (BCR) signaling and nuclear factor erythroid-derived 2-like 2 (NRF2) pathway correlated with response to the combination of MRK-003 with gemcitabine. The preclinical findings presented here provide further rationale for small molecule inhibition of Notch signaling as a therapeutic strategy in PDAC.

Publication Title

The gamma secretase inhibitor MRK-003 attenuates pancreatic cancer growth in preclinical models.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE26900
Effect of Tet1-knockdown on gene expression in mouse ES cells cultured in ES and TS cell culture conditions
  • organism-icon Mus musculus
  • sample-icon 27 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

TET-family enzymes convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) in DNA. Tet1 and Tet2 are Oct4-regulated enzymes that together sustain 5hmC in mouse embryonic stem (ES) cells. ES cells depleted of Tet1 by RNAi show diminished expression of the Nodal antagonist Lefty1, and display hyperactive Nodal signalling and skewed differentiation into the endoderm-mesoderm lineage in embryoid bodies in vitro. In Fgf4- and heparin-supplemented culture conditions that favor derivation of trophoblast stem (TS) cells, Tet1-depleted ES cells activate the trophoblast stem cell lineage determinant Elf5 and can colonize the placenta in mid-gestation embryo chimeras. Consistent with these findings, Tet1-depleted ES cells form aggressive hemorrhagic teratomas with increased endoderm, reduced neuroectoderm and ectopic appearance of trophoblastic giant cells. Thus Tet1 functions to regulate the lineage differentiation potential of ES cells. Here, we performed whole-genome transcriptome profiling of ES cells stably depleted of Tet1 by shRNA knockdown (Tet1-kd) cultured in either standard ES cell or in TS cell culture conditions. Gene expression changes in Tet1-kd ES cells were fairly modest compared to control (GFP-kd) cells, although gene ontology (GO) analysis of differentially expressed genes yielded many terms related to embryonic development and cell cycle regulation. In TS cell culture conditions, a core set of genes defining trophectodermal cell differentiation, including Cdx2, Eomes and Tead4, was enriched in Tet1-kd compared to GFP-kd cells.

Publication Title

Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE11128
Expression data from single cells from mouse primordial germ cell lineage (E6.25-E8.25, wild type and Blimp1KO)
  • organism-icon Mus musculus
  • sample-icon 105 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Specification of germ cell fate is fundamental in development. With a highly representative single-cell microarray and rigorous quantitative-PCR analysis, we defined the genome-wide transcription dynamics that create primordial germ cells (PGCs) from the epiblast, a process that exclusively segregates them from their somatic neighbors. We also analyzed the effect of the loss of Blimp1, a key transcriptional regulator, on these dynamics. Our analysis revealed that PGC specification involves complex, yet highly ordered regulation of a large number of genes, proceeding under the strong influence of mesoderm induction with active repression of specific programs such as epithelial-mesenchymal transition, Hox gene activation, cell-cycle progression and DNA methyltransferase machinery. Remarkably, Blimp1 is essential for repressing nearly all the genes normally down-regulated in PGCs relative to their somatic neighbors, whereas it is dispensable for the activation of approximately half of the genes up-regulated in PGCs.

Publication Title

Complex genome-wide transcription dynamics orchestrated by Blimp1 for the specification of the germ cell lineage in mice.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE46855
Induction of the mouse germ cell fate by transcription factors in vitro
  • organism-icon Mus musculus
  • sample-icon 50 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Induction of mouse germ-cell fate by transcription factors in vitro.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE43775
Induction of the mouse germ cell fate by transcription factors in vitro [exp1]
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The germ cell lineage ensures the continuity of life through the generation of male and female gametes, which unite to form a totipotent zygote. We have established a culture system that recapitulates the mouse germ-cell specification pathway: Using cytokines, embryonic stem cells (ESCs)/induced pluripotent stem cells (iPSCs) are induced into epiblast-like cells (EpiLCs) and then into primordial germ cell-like cells (PGCLCs) with capacity both for spermatogenesis and oogenesis, creating an opportunity for understanding and regulating mammalian germ cell development in both sexes in vitro. Here we show that, without cytokines, simultaneous over-expression of three transcription factors (TFs), Blimp1 (also known as Prdm1), Prdm14 and Tfap2c (also known as AP2), directs EpiLCs, but not ESCs, swiftly and highly efficiently into a PGC state with endogenous transcription circuitry. The induction of the PGC state on EpiLCs minimally requires Prdm14 but not Blimp1 or Tfap2c. The TF-induced PGC state reconstitutes key transcriptome and epigenetic reprogramming in PGCs, but bypasses a mesodermal program that accompanies PGC specification in vivo and in vitro by cytokines including BMP4. Importantly, the TF-induced PGC-like cells robustly contribute to spermatogenesis and fertile offspring. Our findings provide not only a novel insight into the transcriptional logic that creates a germ cell state, but also a foundation for the TF-based reconstitution and regulation of mammalian gametogenesis.

Publication Title

Induction of mouse germ-cell fate by transcription factors in vitro.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE46854
Induction of the mouse germ cell fate by transcription factors in vitro [exp2]
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The germ cell lineage ensures the continuity of life through the generation of male and female gametes, which unite to form a totipotent zygote. We have established a culture system that recapitulates the mouse germ-cell specification pathway: Using cytokines, embryonic stem cells (ESCs)/induced pluripotent stem cells (iPSCs) are induced into epiblast-like cells (EpiLCs) and then into primordial germ cell-like cells (PGCLCs) with capacity both for spermatogenesis and oogenesis, creating an opportunity for understanding and regulating mammalian germ cell development in both sexes in vitro. Here we show that, without cytokines, simultaneous over-expression of three transcription factors (TFs), Blimp1 (also known as Prdm1), Prdm14 and Tfap2c (also known as AP2), directs EpiLCs, but not ESCs, swiftly and highly efficiently into a PGC state with endogenous transcription circuitry. The induction of the PGC state on EpiLCs minimally requires Prdm14 but not Blimp1 or Tfap2c. The TF-induced PGC state reconstitutes key transcriptome and epigenetic reprogramming in PGCs, but bypasses a mesodermal program that accompanies PGC specification in vivo and in vitro by cytokines including BMP4. Importantly, the TF-induced PGC-like cells robustly contribute to spermatogenesis and fertile offspring. Our findings provide not only a novel insight into the transcriptional logic that creates a germ cell state, but also a foundation for the TF-based reconstitution and regulation of mammalian gametogenesis.

Publication Title

Induction of mouse germ-cell fate by transcription factors in vitro.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE4309
An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE4307
Expression data from single cells from ICMs of mouse blastocysts at E3.5
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The inner cell mass (ICM) of the early blastocyst at E3.5, a source of ES cell derivation, is a morphologically homogeneous population of undifferentiated pluripotent cells that give rise to all embryonic lineages. The immediate application of the newly developed V1V3 method to single cells in this stage of mouse embryos revealed the presence of two populations of cells, one with primitive endoderm expression and the other with pluripotent epiblast-like gene expression. The genes expressed differentially between these two populations were well preserved in morphologically differentiated primitive endoderm and epiblast in the embryos one day later (E4.5), demonstrating that the method successfully detects subtle but essential differences in gene expression at the single-cell level among seemingly homogeneous cell populations. This study provides a strategy to analyze biophysical events in medicine as well as in neural, stem cell, and developmental biology, where small numbers of distinctive or diseased cells play critical roles.

Publication Title

An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis.

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact