refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Build and Download Custom Datasets
refine.bio helps you build ready-to-use datasets with normalized transcriptome data from all of the world’s genetic databases.
Showing
of 31 results
Sort by

Filters

Technology

Platform

accession-icon GSE27620
CHD5, A Brain-Specific Chromatin Remodeling Enzyme, Regulates Expression Of Neuronal Genes.
  • organism-icon Rattus norvegicus
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina ratRef-12 v1.0 expression beadchip

Description

CHD5 is frequently deleted in neuroblastoma, and appears to be a tumor suppressor gene; however, little is known about the role of CHD5. We found CHD5 mRNA was restricted to brain; by contrast most other remodeling ATPases were broadly expressed. CHD5 protein isolated from mouse brain was associated with HDAC2, p66, MTA3 and RbAp46 in a megadalton complex. CHD5 protein was detected in several rat brain regions and appeared to be enriched in neurons. CHD5 protein was predominantly nuclear in primary rat neurons and brain sections. Microarray analysis revealed genes that were upregulated and downregulated when CHD5 was depleted from primary neurons. CHD5 depletion altered expression of neuronal genes, transcription factors, and brain-specific subunits of the SWI/SNF remodeling enzyme. Aging and Alzheimers gene sets were strongly affected by CHD5 depletion from primary neurons. Chromatin immunoprecipitation revealed CHD5 bound to these genes, suggesting the regulation was direct. Together, these results indicate that CHD5 is found in a NuRD-like multi-protein complex. CHD5 is restricted to the brain, unlike the closely related family members CHD3 and CHD4. CHD5 regulates expression of neuronal genes, cell cycle genes and remodeling genes. CHD5 is linked to regulation of aging and Alzheimers genes.

Publication Title

CHD5, a brain-specific paralog of Mi2 chromatin remodeling enzymes, regulates expression of neuronal genes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE10908
Differential gene expression in ADAM10 over-expressing transgenic mice
  • organism-icon Mus musculus
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

In a transgenic mouse model of Alzheimer disease (AD), cleavage of the amyloid precursor protein (APP) by the -secretase ADAM10 prevented amyloid plaque formation and alleviated cognitive deficits. Furthermore, there was a positive influence of ADAM10 over-expression on neurotransmitter-specific formation of synapses and on synaptic plasticity.

Publication Title

Differential gene expression in ADAM10 and mutant ADAM10 transgenic mice.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE68459
Expression analyses of E12.5 embryonic brains from Nestin Cre+, Rest GTi/GTi vs Rest GTi/GTi litermates
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We use mice containing a gene trap in the first intron of the Rest gene, which effectively eliminates transcription from all coding exons, to prematurely remove REST from neural progenitors. We find catastrophic DNA damage that occurs during S-phase of the cell cycle and concominant with activation of p53 pro-apoptotic sgnalling, with consequences including abnormal chromosome separation, apoptosis, and smaller brains.

Publication Title

The REST remodeling complex protects genomic integrity during embryonic neurogenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE68368
Expression analyses of E12.5 embryonic brains from Nestin Cre+, Rest GTi/GTi, p53 fl/fl vs Rest GTi/GTi, p53 fl/fl littermates
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

We use mice containing a gene trap in the first intron of the Rest gene, which effectively eliminates transcription from all coding exons, to prematurely remove REST from neural progenitors. We find catastrophic DNA damage that occurs during S-phase of the cell cycle, with consequences including abnormal chromosome separation, apoptosis, and smaller brains. Further support for persistent effects is the latent appearance of proneural glioblastomas in adult mice also lacking the tumor suppressor, p53. A Rest deficient mouse line generated previously, using a conventional gene targeting approach, does not exhibit these phenotypes, likely due to a remaining C terminal peptide that still binds chromatin and recruits REST chromatin modifiers.Our results indicate that REST-mediated chromatin remodeling is required for proper S-phase dynamics, prior to its well-established role in relieving repression of neuronal genes at terminal differentiation.

Publication Title

The REST remodeling complex protects genomic integrity during embryonic neurogenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE20115
Expression analysis of Reh cells after transfection with shRNA targeting CBFA2T3 and/or constitutively active IKK(EE)
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Genome-wide gene expression analysis of Reh cells following transfection with shRNA targeting CBFA2T3, constitutively active IKK(EE), or both in combination.

Publication Title

Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma.

Sample Metadata Fields

Cell line

View Samples
accession-icon E-MEXP-731
Transcription profiling by array of hippocampus from CIC-6 knock-out mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

3 pairs of wt and ClC-6 knockout mice, RNA from p14 hippocampus

Publication Title

Lysosomal storage disease upon disruption of the neuronal chloride transport protein ClC-6.

Sample Metadata Fields

Sex, Age, Specimen part, Subject, Time

View Samples
accession-icon GSE6770
Gene Expression Data in HDAC2 KO Myocardium
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We used microarrays to detail the global programme of gene expression underlying cardiac development by HDAC2 and identified distinct classes of up-regulated and down-regulated genes during this process.

Publication Title

Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE58813
Dickkopf 3 Promotes the Differentiation of Substantia Nigra Dopaminergic Neurons In Vivo and from Pluripotent Stem Cells In Vitro
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

WNT1/beta-catenin signaling plays a crucial role in the generation of mesodiencephalic dopaminergic (mdDA) neurons including the Substantia nigra pars compacta (SNc) subpopulation, whose degeneration is a hallmark of Parkinsons Disease (PD). However, the precise functions of WNT/beta-catenin signaling in this context remain unknown. Using mutant mice, primary ventral midbrain (VM) cells and pluripotent stem cells (mouse embryonic stem cells and induced pluripotent stem cells), we show that Dickkopf 3 (DKK3), a secreted glycoprotein that modulates WNT/beta-catenin signaling, is specifically required for the correct differentiation of a rostrolateral mdDA precursor subset into SNc DA neurons.

Publication Title

Dickkopf 3 Promotes the Differentiation of a Rostrolateral Midbrain Dopaminergic Neuronal Subset In Vivo and from Pluripotent Stem Cells In Vitro in the Mouse.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP165993
The aryl hydrocarbon receptor pathway defines the time frame for restorative neurogenesis
  • organism-icon Danio rerio
  • sample-icon 7 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We compared transcriptomes of two ependymoglial populations isolated from adult zebrafish telencephalon. Overall design: Ependymoglial cells are acutely isolated from the adult zebrafish brains form 3 months old transgenic gfap:GFP animals. GFP is experssed in all ependymoglial cells and two populations are separated using GFP intensity in FACS.

Publication Title

The Aryl Hydrocarbon Receptor Pathway Defines the Time Frame for Restorative Neurogenesis.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE5140
Creatine increases health and life span in mice
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Here we show that oral creatine (Cr) supplementation leads to increased life span in mice. Treated mice showed improved neurobehavioral performance, decreased accumulation of the aging pigment lipofuscin and upregulation of anti-aging genes in brain. As Cr is virtually free of adverse effects, it may be a promising food supplement for healthy aging in man.

Publication Title

Creatine improves health and survival of mice.

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact