refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 17 results
Sort by

Filters

Technology

Platform

accession-icon SRP001307
Proteomic analysis of murine Piwi proteins reveals a role for arginine methylation in specifying interaction with Tudor family members
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer

Description

In germ cells, Piwi proteins interact with a specific class of small non-coding RNAs, piwi-interacting RNAs (piRNAs). Together, these form a pathway that represses transposable elements, thus safeguarding germ cell genomes. While basic models describe the operation of piRNA pathways, neither the protein compositions of Piwi complexes, the critical protein-protein interactions that drive small RNA production and target recognition, or the precise molecular consequences of conserved localization to germline structures, call nuage, is well understood. We purified the three murine Piwi family proteins, Mili, Miwi, and Miwi2, from mouse germ cells and characterized their interacting protein partners. Piwi proteins were found in complex with Prmt5/Wdr77, an enzyme that di-methylates arginine residues. By immunoprecipitation with specific antibodies and by mass spectrometry, we found that Piwi proteins are arginine methylated at conserved positions in their amino termini. These modifications are essential to direct complex formation with specific Tudor-domain proteins, whose interactions with Piwis can be required for localization of RNP complexes in cytoplasmic nuage, proper piRNA expression, and transposon silencing. Considered together, our findings indicate that arginine methylation drives the assembly of multi-protein machines whose integrity and specific sub-cellular localization is necessary for efficient function of the piRNA pathway. Keywords: gene regulation study Overall design: Total small RNA in embryonic and post-birth mouse testes of tdrd1 and tdrd6 mutants

Publication Title

RNF17 blocks promiscuous activity of PIWI proteins in mouse testes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE15913
Thalidomide Exerts Distinct Molecular Antileukemic Effects
  • organism-icon Homo sapiens
  • sample-icon 39 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Thalidomide Exerts Distinct Molecular Antileukemic Effects and Combined Thalidomide/Fludarabine Therapy is Clinically Effective in High-Risk Chronic Lymphocytic Leukemia

Publication Title

Thalidomide exerts distinct molecular antileukemic effects and combined thalidomide/fludarabine therapy is clinically effective in high-risk chronic lymphocytic leukemia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE25621
The genes regulated by SOX11 in mantle cell lymphoma
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The genes regulated by SOX11 in MCL was investigated in MCL cell line Granta 519 by siRNA knock down system. Cells were transfected using the LONZA electroporation system. Results represent cells harvested after 20 hours. Details of the experiment is published in PMID 21124928.

Publication Title

Gene expression profiling and chromatin immunoprecipitation identify DBN1, SETMAR and HIG2 as direct targets of SOX11 in mantle cell lymphoma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE8687
Inhibition of activation of Sez-4 cell line with IL-2 by Jak kinase inhibitors.
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In this study we compared the effects of IL-2, IL-15, and IL-21 on the gene expression, activation of cell signaling pathways, and functional properties of cells derived from the CD4+ cutaneous T-cell lymphoma (CTCL). Whereas both IL-2 and IL-15 that signal through receptors that share the common gamma chain and the beta chain modulated the expression of >1,000 genes, IL-21 that signals via the receptor also containing gamma chain up-regulated <40 genes. All three cytokines induced tyrosine phosphorylation of Jak1 and Jak3. However, only IL-2 and IL-15 strongly activated STAT5, PI3K/Akt, and MEK/ERK signaling pathways. In contrast, IL-21 selectively activated STAT3. Whereas all three cytokines protected CTCL cells from apoptosis, only IL-2 and IL-15 promoted their proliferation. The effects of the cytokine stimulation were Jak3- and Jak1-kinase dependent. These findings document the vastly different impact of IL-2 and IL-15 vs. IL-21 on malignant CD4+ T cells. They also suggest two novel therapeutic approaches to CTCL and, possibly, other CD4+ T cell lymphomas: inhibition of the Jak1/Jak3 kinase complex and, given the known strong immunostimulatory properties of IL-21 on CD8+ T, NK, and B cells, application of this cytokine to boost an immune response against malignant CD4+ T cells.

Publication Title

Differential effects of interleukin-2 and interleukin-15 versus interleukin-21 on CD4+ cutaneous T-cell lymphoma cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE8685
Activation of Sez-4 cell line with IL-2, IL-15 or IL-21.
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In this study we compared the effects of IL-2, IL-15, and IL-21 on the gene expression, activation of cell signaling pathways, and functional properties of cells derived from the CD4+ cutaneous T-cell lymphoma (CTCL). Whereas both IL-2 and IL-15 that signal through receptors that share the common gamma chain and the beta chain modulated the expression of >1,000 genes, IL-21 that signals via the receptor also containing gamma chain up-regulated <40 genes. All three cytokines induced tyrosine phosphorylation of Jak1 and Jak3. However, only IL-2 and IL-15 strongly activated STAT5, PI3K/Akt, and MEK/ERK signaling pathways. In contrast, IL-21 selectively activated STAT3. Whereas all three cytokines protected CTCL cells from apoptosis, only IL-2 and IL-15 promoted their proliferation. The effects of the cytokine stimulation were Jak3- and Jak1-kinase dependent. These findings document the vastly different impact of IL-2 and IL-15 vs. IL-21 on malignant CD4+ T cells. They also suggest two novel therapeutic approaches to CTCL and, possibly, other CD4+ T cell lymphomas: inhibition of the Jak1/Jak3 kinase complex and, given the known strong immunostimulatory properties of IL-21 on CD8+ T, NK, and B cells, application of this cytokine to boost an immune response against malignant CD4+ T cells.

Publication Title

Differential effects of interleukin-2 and interleukin-15 versus interleukin-21 on CD4+ cutaneous T-cell lymphoma cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP021535
Minotaur is critical for primary piRNA biogenesis [RNA-Seq]
  • organism-icon Drosophila melanogaster
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

Piwi proteins and their associated small RNAs are essential for fertility in animals. This is due, in part, to their roles in guarding germ cell genomes against the activity of mobile genetic elements. piRNA populations direct Piwi proteins to silence transposon targets and as such form a molecular code that discriminates transposons from endogenous genes. Information ultimately carried by piRNAs is encoded within genomic loci, termed piRNA clusters. These give rise to long, single-stranded, primary transcripts that are processed into piRNAs. Despite the biological importance of this pathway, neither the characteristics that define a locus as a source of piRNAs nor the mechanisms that catalyze primary piRNA biogenesis are well understood. We searched an EMS-mutant collection annotated for fertility phenotypes for genes involved in the piRNA pathway. Twenty-seven homozygous-sterile strains showed transposon-silencing defects. One of these, which strongly impacted primary piRNA biogenesis, harbored a causal mutation in CG5508, a member of the Drosophila glycerol-3-phosphate O-acetyltransferase (GPAT) family. These enzymes catalyze the first acylation step on the path to the production of phosphatidic acid (PA). Though this pointed strongly to a function for phospholipid signaling in the piRNA pathway, a mutant form of CG5508, which lacks the GPAT active site, still functions in piRNA biogenesis. We have named this new biogenesis factor Minotaur. Overall design: Examination of transcriptom profile in heterozygous and homozygous CG5508 mutant ovaries

Publication Title

Minotaur is critical for primary piRNA biogenesis.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP021534
Minotaur is critical for primary piRNA biogenesis [smallRNA-Seq]
  • organism-icon Drosophila melanogaster
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

Piwi proteins and their associated small RNAs are essential for fertility in animals. This is due, in part, to their roles in guarding germ cell genomes against the activity of mobile genetic elements. piRNA populations direct Piwi proteins to silence transposon targets and as such form a molecular code that discriminates transposons from endogenous genes. Information ultimately carried by piRNAs is encoded within genomic loci, termed piRNA clusters. These give rise to long, single-stranded, primary transcripts that are processed into piRNAs. Despite the biological importance of this pathway, neither the characteristics that define a locus as a source of piRNAs nor the mechanisms that catalyze primary piRNA biogenesis are well understood. We searched an EMS-mutant collection annotated for fertility phenotypes for genes involved in the piRNA pathway. Twenty-seven homozygous-sterile strains showed transposon-silencing defects. One of these, which strongly impacted primary piRNA biogenesis, harbored a causal mutation in CG5508, a member of the Drosophila glycerol-3-phosphate O-acetyltransferase (GPAT) family. These enzymes catalyze the first acylation step on the path to the production of phosphatidic acid (PA). Though this pointed strongly to a function for phospholipid signaling in the piRNA pathway, a mutant form of CG5508, which lacks the GPAT active site, still functions in piRNA biogenesis. We have named this new biogenesis factor Minotaur. Overall design: Examination of small RNA profile in heterozygous and homozygous CG5508 mutant ovaries

Publication Title

Minotaur is critical for primary piRNA biogenesis.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE142807
Transcriptomic profiling of dermatomyositis lesions.
  • organism-icon Homo sapiens
  • sample-icon 48 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

The microarray experiment was employed to evaluate the gene expressions in skin lesions of dermatomyositis and healthy controls.

Publication Title

IL18-containing 5-gene signature distinguishes histologically identical dermatomyositis and lupus erythematosus skin lesions.

Sample Metadata Fields

Disease, Subject

View Samples
accession-icon GSE50803
Expression of SUDHL-1 cell line treated by ALK inhibitors
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In this study we compared the effects of ALK inhibitor on the gene expression, activation of cell signaling pathways, and functional properties of cells derived from a patient with Anaplastic Large Cell Lymphoma. we used microarrays to map the genome-wide gene expression patterns in ALK+TCL cells in response to ALK inhibition.

Publication Title

Malignant transformation of CD4+ T lymphocytes mediated by oncogenic kinase NPM/ALK recapitulates IL-2-induced cell signaling and gene expression reprogramming.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE48558
Expression data from normal and Malignant hematopoietic cells
  • organism-icon Homo sapiens
  • sample-icon 170 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This data was used to determine levels of BRCA1 and BRCA2 in primary human leukemia samples. Samples were determined to be high BRCA1 and/or BRCA2 or low BRCA1 and/or BRAC2.

Publication Title

Personalized synthetic lethality induced by targeting RAD52 in leukemias identified by gene mutation and expression profile.

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact