refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Build and Download Custom Datasets
refine.bio helps you build ready-to-use datasets with normalized transcriptome data from all of the world’s genetic databases.
Showing
of 228 results
Sort by

Filters

Technology

Platform

accession-icon GSE46246
[E-MEXP-3786] IGF-I-induced chronic gliosis and retinal stress lead to neurodegeneration in an animal model of retinopathy
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Transcription profiling by array of mouse male retinas to investigate IGF-I-induced chronic gliosis and retinal stress

Publication Title

Insulin-like growth factor I (IGF-I)-induced chronic gliosis and retinal stress lead to neurodegeneration in a mouse model of retinopathy.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE53989
A genome-wide approach in Arabidopsis thaliana to assess the toxicity of cadmium sulfide quantum dots
  • organism-icon Arabidopsis thaliana
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Cadmium sulfide quantum dots (CdS QDs) are widely used in novel equipment. The relevance of the research lies in the need to develop risk assessments for nanomaterials, using as basis a model plant species.

Publication Title

Genome-wide approach in Arabidopsis thaliana to assess the toxicity of cadmium sulfide quantum dots.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE61643
PGC-1 Promotes Enterocyte Lifespan and Tumorigenesis in the Intestine
  • organism-icon Mus musculus
  • sample-icon 17 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

PGC-1β promotes enterocyte lifespan and tumorigenesis in the intestine.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE61642
Genome-wide analysis expression of ileum tumor samples from FVBN/APCmin and iPGC-1/APCmin
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Analysis of metabolic pathway gene expression. The hypothesis tested in the present study is to assess mRNA level changes in metabolic genes in intestinal tumors from APCmin mice overexpressing PGC-1 specifically in the intestine.

Publication Title

PGC-1β promotes enterocyte lifespan and tumorigenesis in the intestine.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE61640
Genome-wide analysis expression of ileum samples from PGC-1 fl/? and iKOPGC-1
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Analysis of metabolic pathway gene expression. The hypothesis tested in the present study is to assess mRNA level changes in metabolic genes in enterocytes from intestine specific PGC-1 konckout mice.

Publication Title

PGC-1β promotes enterocyte lifespan and tumorigenesis in the intestine.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP127586
Single-cell RNA-seq reveals differentiation of bona fide human pDCs and cDC1s in cultures of cord blood CD34+ progenitors, and a newly identified terminal differentiation step of cDC1s
  • organism-icon Homo sapiens
  • sample-icon 86 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

CD34+ cord blood hematopoietic progenitors were expanded in vitro as previously described (Balan et al., J Immunol, 2014) and then differentiated on a mixed feeder layer of OP9 cells expressing or not the Notch ligand Delta-like 1, with FLT3-L, TPO and IL-7. At the end of the cultures, single live Lin- HLA-DR+ cells were index sorted in 96-well plates containing lysis buffer, and snap frozen. Four putative cell types were sorted according to their expression patterns of key combinations of cell surface markers: putative pDCs, putative cDC1s, putative pre-cDC2s and putative cDC2s. Single cell RNA-sequencing libraries were subsequently generated for 90 single cells and 6 control wells using an adaptation of Smart-Seq2 (Villani et al., Science, 2017). Cells were sequenced at a depth of 1-3M reads/cell. Overall design: A total of 90 single cells and 6 controls from one culture were processed using a protocol adapted from Smart-Seq2 protocol (Villani et al., Science, 2017), which allows for the generation of full-length single cell cDNA, and sequencing libraries were generated using Illumina Nextera XT DNA library preparation kit. A few samples (10) were profiled but excluded from the processed data since they were either bulk (5) or blank (1) control samples or excluded due to QC (4). Therefore, there are 86 samples included here.

Publication Title

Large-Scale Human Dendritic Cell Differentiation Revealing Notch-Dependent Lineage Bifurcation and Heterogeneity.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE15072
Mitochondrial dysregulation and oxidative stress in patients with chronic kidney disease
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Several reports have focused on the identification of biological elements involved in the development of abnormal systemic biochemical alterations in chronic kidney disease, but this abundant literature results most of the time fragmented. To better define the cellular machinery associated to this condition, we employed an innovative high-throughput approach based on a whole transcriptomic analysis and classical biomolecular methodologies. The genomic screening of peripheral blood mononuclear cells revealed that 44 genes were up-regulated in both chronic kidney disease patients in conservative treatment (CKD, n=9) and hemodialysis (HD, n=17) compared to healthy subjects (NORM) (p<0.001, FDR=1%). Functional analysis demonstrated that 11/44 genes were involved in the oxidative phosphorylation system (OXPHOS). Western blotting for COXI and COXIV, key constituents of the complex IV of OXPHOS, performed on an independent testing-group (12 NORM, 10 CKD and 14 HD) confirmed the elevated synthesis of these subunits in CKD/HD patients. However, complex IV activity was significantly reduced in CKD/HD patients compared to NORM (p<0.01). Finally, CKD/HD patients presented higher reactive oxygen species and 8-hydroxydeoxyguanosine levels compared to NORM. Taken together these results suggest, for the first time, that CKD/HD patients may have an impaired mitochondrial respiratory system and this condition may be both the consequence and the cause of an enhanced oxidative stress.

Publication Title

Mitochondrial dysregulation and oxidative stress in patients with chronic kidney disease.

Sample Metadata Fields

Disease, Treatment, Subject

View Samples
accession-icon SRP149899
Analysis of single-cell RNA-seq data from human PBMCs and from in vitro cultures of human cord blood CD34+ progenitors encompassing different DC types
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

For both PBMC and cells from the in vitro cultures, RNA purification and library generation was performed using the Chromium Single Cell Controller apparatus and associated protocols (10X Genomics). Libraries were sequenced by 75-bp single-end reading on a NextSeq500 sequencer (Illumina). Reads were aligned on the GRCh38 human genome assembly. Data analysis was performed using the R software package Seurat (https://github.com/satijalab/seurat) Overall design: Single cell RNA-seq data were generated on the 10X emulsion platform (10X Genomics, Pleasanton, CA) according to the manufacturer's instructions. NextSeq data from the Chromium platform were processed using CellRanger v1.3.1, and subsequent normalization, QC, filtering, and differential gene expression analysis was performed in R using Seurat v1.4.0.16.

Publication Title

Large-Scale Human Dendritic Cell Differentiation Revealing Notch-Dependent Lineage Bifurcation and Heterogeneity.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE102046
Transcriptomic analysis of in vitro-generated human monocyte-derived cells
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

We analyzed the transcriptomes of human dendritic cells and macrophages derived from monocytes using MCSF + IL-4 + TNFa, or IL-34 + IL-4 + TNFa, or dendritic cells derived from monocytes using GMCSF + IL-4.

Publication Title

Aryl Hydrocarbon Receptor Controls Monocyte Differentiation into Dendritic Cells versus Macrophages.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon SRP117082
Single-cell RNA-seq analysis of human CD14+ monocytes
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We performed single-cell RNA-seq on CD14+ monocytes isolated from the blood of healthy donors. Using the 10x chromium technology, we analyzed 425 and 431 cells from 2 individual donors. Overall design: Peripheral Blood Mononuclear Cells (PBMC) were prepared by centrifugation on a Ficoll gradient. Blood CD14+ monocytes were isolated from healthy donors' PBMC by positive selection using magnetic beads. Monocytes were 93-95% CD14+CD16- as assessed by flow cytometry. Cellular suspensions (1700 cells) were loaded on a 10X Chromium instrument (10X Genomics) according to manufacturer's protocol.

Publication Title

Aryl Hydrocarbon Receptor Controls Monocyte Differentiation into Dendritic Cells versus Macrophages.

Sample Metadata Fields

Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact