refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 162 results
Sort by

Filters

Technology

Platform

accession-icon SRP055777
PDGF and FGF treatment in E13.5 MEPMs II
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

PDGF and FGF treatment in E13.5 MEPMs. 4 hr PDGF treated MEPMs (3 replicates), 4 hr FGF treated MEPMs (3 replicates), 1 hr PDGF + PD325901 treated MEPMs (2 replicates), 4 hr PDGF + PD325901 treated MEPMs (2 replicates), 1 hr FGF + PD325901 treated MEPMs (2 replicates), 4 hr FGF + PD325901 treated MEPMs (2 replicates), 1 hr PDGF + LY294002 treated MEPMs (2 replicates), 4 hr PDGF + LY294002 treated MEPMs (2 replicates), 1 hr FGF + LY294002 treated MEPMs (2 replicates), 4 hr FGF + LY294002 treated MEPMs (2 replicates) Overall design: 4 hr PDGF treated MEPMs (3 replicates), 4 hr FGF treated MEPMs (3 replicates), 1 hr PDGF + PD325901 treated MEPMs (2 replicates), 4 hr PDGF + PD325901 treated MEPMs (2 replicates), 1 hr FGF + PD325901 treated MEPMs (2 replicates), 4 hr FGF + PD325901 treated MEPMs (2 replicates), 1 hr PDGF + LY294002 treated MEPMs (2 replicates), 4 hr PDGF + LY294002 treated MEPMs (2 replicates), 1 hr FGF + LY294002 treated MEPMs (2 replicates), 4 hr FGF + LY294002 treated MEPMs (2 replicates)

Publication Title

Receptor tyrosine kinases modulate distinct transcriptional programs by differential usage of intracellular pathways.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP047489
PDGF and FGF treatment in E13.5 MEPMs
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000, Illumina Genome Analyzer IIx

Description

Receptor tyrosine kinase signaling is critical for mammalian craniofacial development, but the key downstream transcriptional effectors remain unknown. We demonstrate that SRF is induced by both PDGF and FGF signaling in mouse embryonic palatal mesenchyme cells, and Srf neural crest conditional mutants exhibit facial clefting accompanied by proliferation and migration defects. Srf and Pdgfra mutants interact genetically in craniofacial development, but Srf and Fgfr1 mutants do not. This signal specificity is recapitulated at the level of cofactor activation: while both PDGF and FGF target gene promoters show enriched genome-wide overlap with SRF ChIP-seq peaks, PDGF selectively activates a network of MRTF-dependent cytoskeletal genes. Collectively, our results identify a novel role for SRF in proliferation and migration during craniofacial development and delineate a mechanism of receptor tyrosine kinase specificity mediated through differential cofactor usage, leading to a unique PDGF-responsive SRF-driven transcriptional program in the midface. Overall design: Serum Starved MEPMs (4 replicates), 1 hr PDGF treated MEPMs (4 replicates), 1 hr FGF treated MEPMs (3 replicates)

Publication Title

Receptor tyrosine kinases modulate distinct transcriptional programs by differential usage of intracellular pathways.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE84333
Age-related changes in gene expression patterns of immature and aged rat primordial follicles
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Women are born with millions of primordial follicles which gradually decrease with increasing age and this irreversible supply of follicles completely exhausts at menopause. The fertility capacity of women diminishes in parallel with aging. The mechanisms for reproductive aging are not fully understood. In our recent work we observed a decline in BRCA1 mediated DNA repair in aging rat primordial follicles. To further understand the age-related molecular changes, we performed microarray gene expression analysis using total RNA extracted from immature (1820 days) and aged (400450 days) rat primordial follicles. The results of current microarray study revealed that there were 1011 (>1.5 fold, p<0.05) genes differentially expressed between two groups in which 422 genes were up-regulated and 589 genes were down-regulated in aged rat primordial follicles compared to immature. The gene ontology and pathway analysis of differentially expressed genes revealed a critical biological function such as cell cycle, oocyte meiosis, chromosomal stability, transcriptional activity, DNA replication and DNA repair were affected by age and this considerable difference in gene expression profiles may have adverse influence on oocyte quality. Our data provide information on the processes that may contribute to aging and age-related decline in fertility.

Publication Title

Age-related changes in gene expression patterns of immature and aged rat primordial follicles.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE66324
Nitric oxide regulates gene expression in cancers by controlling histone posttranslational modifications
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene Expression Array (primeview), Illumina HiSeq 2000

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Nitric Oxide Regulates Gene Expression in Cancers by Controlling Histone Posttranslational Modifications.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE54232
Histone H3 Acetylation and microRNA(s) Regulate Inflammatory response in Mastitis Mice, induced by Staphylococcus aureus Infection
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Epigenetic response in mice mastitis: Role of histone H3 acetylation and microRNA(s) in the regulation of host inflammatory gene expression during Staphylococcus aureus infection.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE54230
Histone H3 Acetylation and microRNA(s) Regulate Inflammatory response in Mastitis Mice, induced by Staphylococcus aureus Infection [Microarray]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Bacterial infection in the mammary gland parenchyma induces local inflammation that can lead to a multietiological complex disease called mastitis. Globally Staphylococcus aureus is the single largest mastitis pathogen and the infection can ultimately result in either subclinical or chronic and sometimes lifelong infection. In the present report we have addressed the differential inflammatory response in the mice mammary tissue during intramammary infection and the altered epigenetic context induced by two closely related strains of S. aureus. Immunohistochemical and immunoblot analysis showed strain specific hyperacetylation at histone H3K9 and H3K14 residues. Real-time PCR and genome-wide gene expression studied showed expression of a set of proinflammatory genes and cytokines in a temporal manner. Remarkably, over expression of the genes significantly correlated with the promoter specific acetylation in these residues. Furthermore, we have identified several differentially expressed known miRNAs and 4 novel miRNAs in the S. aureus infected mice mammary tissue by small RNA sequencing. By employing these gene expression data, an attempt has been made to delineate the gene regulatory networks in the strain specific inflammatory response. Apparently, one of the isolates of S. aureus activated the NFkB signaling leading to drastic inflammatory response and induction of immune surveillance, which could lead to rapid clearance of the pathogen. The other strain repressed most of the inflammatory response, which might help in its sustenance in the host tissue. Taken together, our studies shed substantial lights to understand the mechanisms of strain specific differential inflammatory response to S. aureus infection during mastitis.

Publication Title

Epigenetic response in mice mastitis: Role of histone H3 acetylation and microRNA(s) in the regulation of host inflammatory gene expression during Staphylococcus aureus infection.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE50980
miR-483 overexpression in human sarcoma cell line MHH-ES-1.
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

miRNA abnormalities are increasingly relevent to cancer development, We used microarrays to detail the global programme of gene expression upon miR-483 overexpression in sarcoma cell line MHH-ES-1.

Publication Title

The IGF2 intronic miR-483 selectively enhances transcription from IGF2 fetal promoters and enhances tumorigenesis.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE135221
Expression data from Hela cells that express wt or SUMOylation-deficient IRF2BP1 and which are treated with or without EGF after serum starvation
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

The transcriptional co-regulator IRF2BP1 gets de-SUMOylated after EGF treatment in Hela cells. SUMOylation of IRF2BP1 occurs at position K579.

Publication Title

Transient deSUMOylation of IRF2BP proteins controls early transcription in EGFR signaling.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE77512
A specialized mechanism of translation mediated by FXR1a-associated microRNP in cellular quiescence
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

MicroRNAs predominantly decrease gene expression; however, specific mRNAs are translationally upregulated in quiescent (G0) mammalian cells and immature Xenopus laevis oocytes by an FXR1a-associated microRNP (microRNA-protein complex) that lacks the microRNP repressor, GW182. We conducted global proteomic analysis in THP1 cells depleted of FXR1 to globally identify activation targets of more than one microRNA, since FXR1 is required for microRNAmediated translation activation in THP1 G0 cells by FXR1-microRNPs.Since proteomic data changes could also be due to changes at the RNA level, total RNA levels in FXR1knockdown compared to control shRNA cells were examined in parallel by microarray analysis using Affymetrix Human GeneChip 2.0 ST.

Publication Title

A Specialized Mechanism of Translation Mediated by FXR1a-Associated MicroRNP in Cellular Quiescence.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP066192
Genome–wide transcriptional profiling with spatial resolution identifies Bone Morphogenetic Protein signaling as essential regulator of zebrafish cardiomyocyte regeneration.
  • organism-icon Danio rerio
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

In contrast to mammals, zebrafish regenerate heart injuries via proliferation of cardiomyocytes located at the wound border. Here, we show that tomo-seq can be used to identify whole-genome transcriptional profiles of the injury zone, the border zone and the healthy myocardium. Interestingly, the border zone is characterized by the re-expression of embryonic cardiac genes that are also activated after myocardial infarction in mouse and human, including targets of Bone Morphogenetic Protein (BMP) signaling. Endogenous BMP signaling has been reported to be detrimental to mammalian cardiac repair. In contrast, we find that genetic or chemical inhibition of BMP signaling in zebrafish reduces cardiomyocyte dedifferentiation and proliferation, ultimately compromising myocardial regeneration, while bmp2b overexpression is sufficient to enhance it. Our results provide a resource for further studies on the molecular regulation of cardiac regeneration and reveal intriguing differential cellular responses of cardiomyocytes to a conserved signaling pathway in regenerative versus non-regenerative hearts. Overall design: To generate spatially-resolved RNA-seq data for injured zebrafish hearts (3 and 7 days-post-injury), we cryosectioned samples, extracted RNA from the individual sections, and amplified and barcoded mRNA using the CEL-seq protocol (Hashimshony et al., Cell Reports, 2012) with a few modifications. Libraries were sequenced on Illumina NextSeq using 75bp paired end sequencing.

Publication Title

Spatially Resolved Genome-wide Transcriptional Profiling Identifies BMP Signaling as Essential Regulator of Zebrafish Cardiomyocyte Regeneration.

Sample Metadata Fields

Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact