refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 180 results
Sort by

Filters

Technology

Platform

accession-icon GSE48779
Morphological, genomic, and transcriptomic characterization of heterogeneity in chordoma cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The classical sacrococcygeal chordoma tumor presents with a typical morphology of lobulated myxoid tumor tissue with cords, strands and nests of tumor cells consisting of small non-vacuolated cells, intermediate cells with a wide range of vacuolization and large heavily vacuolated (physaliferous) cells. Because of its rare incidence, lack of suited model systems and technical limitations analysis was only performed on bulk tumor mass neglecting its heterogeneous composition. We aimed at elucidating the differences between small non-vacuolated and large physaliferous cells on the genomic and transcriptomic level. Secondly, we intended to clarify whether the observed cell types are derived from genetically distinct clones or rather represent different phenotypes. Using the chordoma cell line MUG-Chor1 we monitored morphological changes via time lapse experiments. We isolated pure fractions of each phenotype by means of laser microdissection or micromanipulation allowing phenotype-specific analysis. Pools of 100 cells each were genetically profiled after whole genome amplification by array comparative genomic hybridization. For expression analysis 20 cells each were subjected to whole transcriptom amplification, forwarded to RNA microarray analysis and qRT-PCR. Time lapse analysis unveiled small non-vacuolated cells to develop into large physaliferous cells via intermediate cells containing an increasing amount of vacuoles. Furthermore, we showed small and large physaliferous cells to proliferate at the same rate but intermediate cells to be the most proliferating cell phenotype. Small non-vacuolated and large physaliferous cells showed identical copy number variations. Despite their obvious morphological disparities we detected only modest changes in over all gene expression. However, verification of candidate genes yielded significant up-regulation of ALG11 (700-fold), PPP2CB (18.6-fold), and UCHL3 (18.7-fold) in large physaliferous cells.

Publication Title

Resolving tumor heterogeneity: genes involved in chordoma cell development identified by low-template analysis of morphologically distinct cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE9914
Expression data from early symptomatic Sca1154Q/2Q and Sca7266Q/5Q knock-in cerebellum
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Comparative analysis of cerebellar gene expression changes occurring in Sca1154Q/2Q and Sca7266Q/5Q knock-in mice

Publication Title

The insulin-like growth factor pathway is altered in spinocerebellar ataxia type 1 and type 7.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE35976
Genome wide array analysis of endosseous implant adherent cellular phenotypes
  • organism-icon Rattus norvegicus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.1 ST Array (ragene11st)

Description

Objective: to identify the early molecular processes involved in osseointegration associated with a micro roughened and nanosurface featured implants.

Publication Title

Comparative molecular assessment of early osseointegration in implant-adherent cells.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE9419
The skeletal muscle transcript profile reflects responses to inadequate protein intake in younger and older males
  • organism-icon Homo sapiens
  • sample-icon 66 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Inadequate protein intake initiates an accommodative response with adverse changes in skeletal muscle function and structure. mRNA level changes due to short-term inadequate dietary protein might be an early indicator of accommodation. The aims of this study were to assess the effects of dietary protein and the diet-by-age interaction on the skeletal muscle transcript profile. Self-organizing maps were used to determine expression patterns across protein trials.

Publication Title

The skeletal muscle transcript profile reflects accommodative responses to inadequate protein intake in younger and older males.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE30487
Expression profile of high yielding rice introgression line
  • organism-icon Oryza sativa
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rice Genome Array (rice)

Description

Leaves and panicles from recurrent parent KMR3 and a high yielding KMR3-O.rufipogon introgression line were used

Publication Title

Os11Gsk gene from a wild rice, Oryza rufipogon improves yield in rice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE8441
Inadequate protein intake affects skeletal muscle transcript profiles in older humans
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Inadequate dietary protein intake causes adverse changes in the morphology and function of skeletal muscle. These changes may be reflected in early alterations in muscle mRNA levels.

Publication Title

Inadequate protein intake affects skeletal muscle transcript profiles in older humans.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE12806
Inhibition of Chlamydia pneumoniae Replication in Human Dendritic cells by TNF-alpha-Induced Indoleamine 2,3-Dioxygenase
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Infection with Chlamydia pneumoniae, a human respiratory pathogen, has been associated with various chronic diseases such as asthma, coronary heart disease and importantly atherosclerosis. Possibly because the pathogen can exist in a persistent form. TNF-a has been reported to induce chlamydial persitence in epithelial cell lines, however the mechanism of TNF-a-induced persistence has not been reported. Moreover, C. pneumoniae persistently infect human dendritic cells (DCs) and activate DCs to produce cytokines including TNF-a. Induction of chlamydial persistence by other cytokines such as IFN-g is known to be due to indoleamine 2,3-dioxygenase (IDO) activity. The present study therefore, investigated whether C. pneumoniae infection can induce IDO activity in dendritic cells, and whether the restriction of chlamydial growth in the DCs by TNF-a is IDO-dependent. Our data indicate that infection of DCs with C. pneumoniae resulted in the induction of IDO expression. Reporting on our use of anti-TNF-a antibody adalimumab and varying concentrations of TNF-a, we further demonstrate that IDO induction following infection of DCs with C. pneumoniae is TNF-a-dependent. The anti-chlamydial activity induced by TNF-a and the expression of chlamydial 16S rRNA gene, euo, groEL1, ftsk and tal genes was correlated with the induction of IDO. Addition of excess amounts of tryptophan to the DC cultures resulted in abrogation of the TNF-a-mediated chlamydial growth restriction. These findings suggest that infection of DCs by C. pneumoniae induces production of functional IDO, which subsequently causes depletion of tryptophan. This may represent a potential mechanism for DCs to restrict bacterial growth in chlamydial infections.

Publication Title

Restriction of Chlamydia pneumoniae replication in human dendritic cell by activation of indoleamine 2,3-dioxygenase.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE43956
Induction of pathogenic Th17 cells by salt inducible kinase SGK-1 (SGK-1 KO)
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Th17 cells are highly proinflammatory cells that are critical for clearing extracellular pathogens like fungal infections and for induction of multiple autoimmune diseases1. IL-23 plays a critical role in stabilizing and endowing Th17 cells with pathogenic effector functions2. Previous studies have shown that IL-23 signaling reinforces the Th17 phenotype by increasing expression of IL-23 receptor (IL-23R)3. However, the precise molecular mechanism by which IL-23 sustains the Th17 response and induces pathogenic effector functions has not been elucidated. Here, we used unbiased transcriptional profiling of developing Th17 cells to construct a model of their signaling network and identify major nodes that regulate Th17 development. We identified serum glucocorticoid kinase-1 (SGK1), as an essential node downstream of IL-23 signaling, critical for regulating IL-23R expression and for stabilizing the Th17 cell phenotype by deactivation of Foxo1, a direct repressor of IL-23R expression. A serine-threonine kinase homologous to AKT4, SGK1 has been associated with cell cycle and apoptosis, and has been shown to govern Na+ transport and homeostasis5, 6 7, 8. We here show that a modest increase in salt (NaCl) concentration induces SGK1 expression, promotes IL-23R expression and enhances Th17 cell differentiation in vitro and in vivo, ultimately accelerating the development of autoimmunity. The loss of SGK1 resulted in abrogation of Na+-mediated Th17 differentiation in an IL-23-dependent manner. These data indicate that SGK1 is a critical regulator for the induction of pathogenic Th17 cells and provides a molecular insight by which an environmental factor such as a high salt diet could trigger Th17 development and promote tissue inflammation.

Publication Title

Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE43957
Induction of pathogenic Th17 cells by salt inducible kinase SGK-1 (NaCl)
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Th17 cells are highly proinflammatory cells that are critical for clearing extracellular pathogens like fungal infections and for induction of multiple autoimmune diseases1. IL-23 plays a critical role in stabilizing and endowing Th17 cells with pathogenic effector functions2. Previous studies have shown that IL-23 signaling reinforces the Th17 phenotype by increasing expression of IL-23 receptor (IL-23R)3. However, the precise molecular mechanism by which IL-23 sustains the Th17 response and induces pathogenic effector functions has not been elucidated. Here, we used unbiased transcriptional profiling of developing Th17 cells to construct a model of their signaling network and identify major nodes that regulate Th17 development. We identified serum glucocorticoid kinase-1 (SGK1), as an essential node downstream of IL-23 signaling, critical for regulating IL-23R expression and for stabilizing the Th17 cell phenotype by deactivation of Foxo1, a direct repressor of IL-23R expression. A serine-threonine kinase homologous to AKT4, SGK1 has been associated with cell cycle and apoptosis, and has been shown to govern Na+ transport and homeostasis5, 6 7, 8. We here show that a modest increase in salt (NaCl) concentration induces SGK1 expression, promotes IL-23R expression and enhances Th17 cell differentiation in vitro and in vivo, ultimately accelerating the development of autoimmunity. The loss of SGK1 resulted in abrogation of Na+-mediated Th17 differentiation in an IL-23-dependent manner. These data indicate that SGK1 is a critical regulator for the induction of pathogenic Th17 cells and provides a molecular insight by which an environmental factor such as a high salt diet could trigger Th17 development and promote tissue inflammation.

Publication Title

Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE100398
Gene Expression Profile of ING5-knockdown Brain Tumor Initiating Cell Lines
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Transcriptome analysis on ING5-knockdown brain tumor stem cell lines

Publication Title

ING5 activity in self-renewal of glioblastoma stem cells via calcium and follicle stimulating hormone pathways.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact