refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 90 results
Sort by

Filters

Technology

Platform

accession-icon GSE17272
Expression profile of splenocytes with glucose-6-phosphate isomerase (GPI) induced arthritis
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

To explore TNF-related genes in GPI-induced arthritis, we performed GeneChip analysis using arthritic splenocytes and control-immunized splenocytes. Among the arrayed TNFalpha-related genes, TIARP mRNA was highly expressed in arthritic splenocytes, with levels exceeding more than 20-times the control splenocytes

Publication Title

Tumor necrosis factor alpha-induced adipose-related protein expression in experimental arthritis and in rheumatoid arthritis.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP179766
Mouse skin samples after Zika virus-infected mosquito bites
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Mouse skin bitten by Zika virus-infected mosquitoes were isolated and performed RNA-seq Overall design: Examination of host responses after Zika virus-infected mosquito bites, in duplicate

Publication Title

Aedes aegypti AgBR1 antibodies modulate early Zika virus infection of mice.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon SRP159079
Human Treg IL-12 stimulation
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Human Tregs isolated from PBMCs were cultured in the absence or presence of IL-12 (20ng/ml) for four days and were performed mRNA-seq. Overall design: mRNA profiles of human Treg stimulated with IL-12 (Th1 condition)

Publication Title

Activated β-catenin in Foxp3<sup>+</sup> regulatory T cells links inflammatory environments to autoimmunity.

Sample Metadata Fields

Age, Subject

View Samples
accession-icon GSE113645
DNA microarray analysis of active- and inactive-adult Still disease (ASD)
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Objective: Adult Stills disease (ASD) is a systemic disorder of unknown etiology characterized by high spiking fever, rash and arthritis. The purpose of this study was to determine the pathogenic roles of specific genes in ASD. Methods: Differentially expressed genes (DEGs) were examined by DNA microarray and validated by quantitative PCR using monocytes isolated from patients with active-ASD, inactive-ASD and healthy controls. The correlation between validated DEGs and ASD activity was analyzed. After inflammasome activation with LPS and Nigericin, the production of IL-1, IL-18, inflammasome and autophagy related proteins in DEGs-overexpressing THP-1 cells was carried out by ELISA or western blotting. DEGs-overexpressing THP-1 cells were treated with an inhibitor of autophagy followed by assessment of IL-1 and IL-18 production by ELISA and western blotting method.Conclusions: The overexpression of PLAC8 in monocytes might play a regulatory role in the production of IL-1 and IL-18 by the enhancement of autophagy, resulting in the suppression of ASD. Results:A total of 68 genes were highly expressed in monocytes isolated from active-ASD patients, relative to their expression in inactive-ASD patients and healthy controls. After validation of expression of 13 genes (CLU, FCGR1B, PLAC8, TLR1, S100A12, CD55, PIM1, BCL2A1, SOD2, PLSCR1, CYP1B1, STEAP4, IL1RN), the expression of PLAC8 was significantly higher in active-ASD patients than the other groups. In ASD, PLAC8 expression level correlated with serum levels of CRP, ferritin and IL-18. Stimulation of monocytes with lipopolysaccharide resulted in PLAC8 upregulation. LPS or Nigericin stimulation of PLAC8-overexpressing THP-1, but not THP-1 cells< was associated with significant decrease in IL-1 and IL-18 production. PLAC8 overexpressing in THP-1 cells was associated with enhanced autophagy and suppression of IL-1 and IL-18 production. Conclusions: PLAC8 upregulation in monocytes seemed to play a regulatory role in the production of IL-1 and IL-18 through enhanced autophagy, resulting in suppression of ASD. The results highlight the role of PLAC8 in the pathogenesis of ASD and suggest its potential suitability as a therapeutic target in ASD.

Publication Title

Placenta Specific 8 Suppresses IL-18 Production through Regulation of Autophagy and Is Associated with Adult Still Disease.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE36078
Virus-misplaced host protein activates innate immunity
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Discrimination between self vs. non-self and adequate response to infection and tissue damage are fundamental functions of the immune system. The rapid and global spread of known and emerging viruses is a testament that the timely detection of viral pathogens that reproduce within host cells, presents a formidable challenge to the immune system. To gain access to a proper reproductive niche, many pathogens travel via the host vasculature and therefore become exposed to humoral factors of the innate immune system. Although a cascade of coagulation factors plays a fundamental role in host defense for living fossils such as horseshoe crabs (Xiphosurida spp), the role of the coagulation system in activation of innate responses to pathogens in higher organisms remains unclear. When human type C adenovirus (HAdv) enters the circulation, 240 copies of coagulation factor X (FX) bind to the virus particle with picomolar affinity. Here, using molecular dynamics flexible fitting (MDFF) and high resolution cryo-electron microscopy (cryo-EM), we defined the interface between the HAdv5 hexon protein and FX at pseudo-atomic level. Based on this structural data, we introduced a single amino acid substitution, T424A, in the hexon that completely abrogated FX interaction with the virus. In vivo genome-wide transcriptional profiling revealed that FX-binding-ablated virus failed to activate a distinct network of the early response genes, whose expression depends on transcription factor NFKB1. Deconvolution of the signaling network responsible for early gene activation showed that the FX-HAdv complex triggers MyD88/TRIF/TRAF6 signaling upon activation of toll-like receptor 4 (TLR4) that serves as a principal sensor of FX-virus complex in vivo. Our study implicates host factor decoration of the virus as a mechanism to trigger innate immune sensor that respond to a misplacement of coagulation FX from the blood into intracellular macrophage compartments upon virus entry into the cell. Our results further the mounting evidence of evolutionary conservation between the coagulation system and innate immunity.

Publication Title

Coagulation factor X activates innate immunity to human species C adenovirus.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE40568
DNA microarray analysis of labial salivary glands in IgG4-related disease comparison with Sjgrens syndrome
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

<Objective> To compare gene expression in labial salivary glands (LSG) of IgG4-related disease (IgG4-RD) with Sjgrens syndrome (SS).

Publication Title

DNA microarray analysis of labial salivary glands in IgG4-related disease: comparison with Sjögren's syndrome.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP100463
Cardiomyocyte gene programs encoding morphological and functional signatures in cardiac hypertrophy and failure (RNA-Seq)
  • organism-icon Mus musculus
  • sample-icon 620 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Pressure overload induces a transition from cardiac hypertrophy to heart failure, but its underlying mechanisms remain elusive. Here we reconstruct a trajectory of cardiomyocyte remodeling and clarify distinct cardiomyocyte gene programs encoding morphological and functional signatures in cardiac hypertrophy and failure, by integrating single-cardiomyocyte transcriptome with cell morphology, epigenomic state and heart function. During early hypertrophy, cardiomyocytes activate mitochondrial translation/metabolism genes, whose expression is correlated with cell size and linked to ERK1/2 and NRF1/2 transcriptional networks. Persistent overload leads to a bifurcation into adaptive and failing cardiomyocytes, and p53 signaling is specifically activated in late hypertrophy. Cardiomyocyte-specific p53 deletion shows that cardiomyocyte remodeling is initiated by p53-independent mitochondrial activation and morphological hypertrophy, followed by p53-dependent mitochondrial inhibition, morphological elongation, and heart failure gene program activation. Human single-cardiomyocyte analysis validates the conservation of the pathogenic transcriptional signatures. Collectively, cardiomyocyte identity is encoded in transcriptional programs that orchestrate morphological and functional phenotypes. Overall design: Integrative analysis of single-cardiomyocyte RNA-seq of pressure-overload-induced heart failure model mice and heart failure patients with dilated cardiomyopathy, single-cell morphology, cardiac function and genetic perturbation

Publication Title

Cardiomyocyte gene programs encoding morphological and functional signatures in cardiac hypertrophy and failure.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE83391
Expression data from cultured fetal lung epithelium
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Branching morphogenesis in lung development is regulate by growth factor signaling. Wnt signaling is one of the important singnaling pathway that is required for progenitor maintainance. In the presence of CHIR99021, an agonist for the beta-catenin pathway of Wnt signaling, specific group of genes are upregulated in cultured lung epithelium.

Publication Title

Modulation of apical constriction by Wnt signaling is required for lung epithelial shape transition.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE49194
Expression data from neurospheres derived from the neocortex, striatum and subventricular zones of the adult mouse brain
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Differential gene expression profiles of neurospheres derived from different regions of the adult brain.

Publication Title

Environmental impact on direct neuronal reprogramming in vivo in the adult brain.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE98364
Expression data in HCT-116 colon cancer cell treated with SCD1 inhibitor or in SCD1 knocked out HCT-116 cell
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To understand molecular mechanisms underlying the growth inhibitory ativity of Stearoyl-CoA desaturase-1 (SCD1) inhibitor, we performed microarray analysis using HCT-116 colorectal cancer cells, in which SCD1 was pharmacologically blocked or genetically ablated.

Publication Title

Feedback activation of AMPK-mediated autophagy acceleration is a key resistance mechanism against SCD1 inhibitor-induced cell growth inhibition.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact