refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 537 results
Sort by

Filters

Technology

Platform

accession-icon GSE28242
Gene expression analysis of urine sediment: evaluation for potential noninvasive markers of interstitial cystitis/bladder pain syndrome
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Purpose: Determine if gene expression profiles in urine sediment could provide non-invasive candidate markers for painful bladder syndrome (PBS) with and/or without Hunner lesions. Materials and Methods: Fresh catheterized urine was collected and centrifuged from control (n = 5), lesion-free (n = 5), and Hunner lesion bearing (n = 3) patients. RNA was extracted from the pelleted material and quantified by gene expression microarray (Affymetrix Human Gene ST Array). Results: Three biologically likely hypotheses were tested: A) all three groups are distinct from one another; B) controls are distinct from both types of PBS patients combined, and C) Hunner lesion PBS patients are distinct from controls and non-Hunner-lesion PBS combined. For statistical parity an unlikely fourth hypothesis was included: non-Hunner-lesion PBS patients are distinct from controls and Hunner lesion PBS combined. Analyses supported selective upregulation of genes in the Hunner lesion PBS group (hypothesis C), and these were primarily associated with inflammatory function. This profile is similar to that reported in a prior microarray study of bladder biopsies in Hunner lesion PBS. Conclusions: Urine sediment gene expression from non-Hunner-lesion PBS patients lacked a clear difference from that of control subjects, while the array signatures from PBS patients with Hunner lesions showed a clear, primarily inflammatory, signature. This signature was highly similar to that seen in a prior microarray study of bladder biopsies. Thus, although sample sizes were small, this work suggests that gene expression in urine sediment may provide a non-invasive biomarker for Hunner lesion, but not non-Hunner lesion, PBS.

Publication Title

Gene expression analysis of urine sediment: evaluation for potential noninvasive markers of interstitial cystitis/bladder pain syndrome.

Sample Metadata Fields

Sex, Age, Disease, Disease stage

View Samples
accession-icon GSE33368
Gene expression atlas for mouse olfactory sensory neurons
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Identification of all genes expressed by mouse olfactory sensory neurons; genes expressed in mature neurons, immature neurons, or both were distinguished. Independent validation of enrichment ratio values supported by statistical assessment of error rates was used to build a database of statistical probabilities of the expression of all mRNAs detected in mature neurons, immature neurons, both types of neurons (shared), and the residual population of all other cell types.

Publication Title

Genomics of mature and immature olfactory sensory neurons.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP092481
Activity-dependent gene expression in the mammalian olfactory epithelium
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We access the activity-dependent genes in olfactory neuron cells with unilateral naris occlusion model with mouse. Overall design: mRNA profile of olfactory epithelia between closed and open sides of mice naris was compared

Publication Title

Activity-Dependent Gene Expression in the Mammalian Olfactory Epithelium.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE17742
Global identification of targets of the Arabidopsis MADS-domain protein AGAMOUS-Like 15
  • organism-icon Arabidopsis thaliana
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-Like15.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE17610
Gene expression in response to AGL15 during somatic embryogenesis
  • organism-icon Arabidopsis thaliana
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Transcript accumulation was measured using the Affymetrix Arabidopsis ATH1 Genome Array [ATH1-121501] to document changes in response to the MADS-domain transcription factor AGAMOUS-Like 15 during somatic embryogenesis.

Publication Title

Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-Like15.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE74524
Odorant Receptor Expression Frequency in Mature Olfactory Sensory Neurons Depends on Lhx2 [123Cre:Lhx2]
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Conditional deletion of Lhx2, and to a lesser extent, Emx2 in olfactory neurons alters odorant receptor expression frequency.

Publication Title

Lhx2 Determines Odorant Receptor Expression Frequency in Mature Olfactory Sensory Neurons.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE74523
Odorant Receptor Expression Frequency in Mature Olfactory Sensory Neurons Depends Lhx2 [OmpCre:Emx2]
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Conditional deletion of Lhx2, and to a lesser extent, Emx2 in olfactory neurons alters odorant receptor expression frequency.

Publication Title

Lhx2 Determines Odorant Receptor Expression Frequency in Mature Olfactory Sensory Neurons.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE74525
Odorant Receptor Expression Frequency in Mature Olfactory Sensory Neurons Depends on Lhx2 [123Cre:Emx2]
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Conditional deletion of Lhx2, and to a lesser extent, Emx2 in olfactory neurons alters odorant receptor expression frequency.

Publication Title

Lhx2 Determines Odorant Receptor Expression Frequency in Mature Olfactory Sensory Neurons.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE74522
Odorant Receptor Expression Frequency in Mature Olfactory Sensory Neurons Depends on Lhx2 [OmpCre:Lhx2]
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Conditional deletion of Lhx2, and to a lesser extent, Emx2 in olfactory neurons alters odorant receptor expression frequency. This series describes 1 of the 5 array experiments.

Publication Title

Lhx2 Determines Odorant Receptor Expression Frequency in Mature Olfactory Sensory Neurons.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE74527
Odorant Receptor Expression Frequency in Mature Olfactory Sensory Neurons Depends on Lhx2
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Lhx2 Determines Odorant Receptor Expression Frequency in Mature Olfactory Sensory Neurons.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact