refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 419 results
Sort by

Filters

Technology

Platform

accession-icon SRP273032
Cystic fibrosis Airway primary epithelial cells in air-liquid interrface culture show abnormal inflammation and lipid metabolism related RNA expresssion compared to non-CF
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

A deficiency in cystic fibrosis transmembrane conductance regulator (CFTR) function in cystic fibrosis (CF) leads to chronic lung disease. However, the molecular mechanisms are not well understood and therapies that can help all patients remain elusive. CF is associated with abnormalities in fatty acids, ceramides and cholesterol, therefore we examined the impact of CFTR deficiency on lipid metabolism and pro-inflammatory signaling in airway epithelium using mass spectrometric, protein array and RNAseq analyses. We observed a striking imbalance in fatty acid and ceramide metabolism, associated with chronic oxidative stress under basal conditions in CF mouse lung and well differentiated bronchial epithelial cell cultures of CFTR knock out pig and CF patients. Cell autonomous features of all three CF models included high ratios of ω-6- to ω-3-polyunsaturated fatty acids and long- to very long- chain ceramide species (LCC/VLCC). The anti-oxidants glutathione (GSH) and deferoxamine partially corrected the lipid profile indicating that oxidative stress may promote the lipid abnormalities. CFTR-targeted modulators reduced the lipid imbalance and apparent oxidative stress, confirming the CFTR dependence of lipid ratios. RNA sequencing and protein array analysis revealed higher expression and shedding of cytokines and growth factors from CF epithelial cells compared to non-CF cells, consistent with sterile inflammation and tissue remodeling under basal conditions. Treatment with antioxidants or CFTR modulators that mimic the approved combination therapies, Orkambi and Trikafta, did not suppress the inflammatory phenotype. These results suggest that anti-inflammatory therapies may provide additional benefit for CF patients taking CFTR modulator drugs. Overall design: Here we report analysis of nine samples, three of Cf patient (BCF000174), homozygous for F508del CFTR, compared to two non-CF in triplicate each (P21, P11, ErasmusMC, Rotterdam, compared pairwise)

Publication Title

CFTR Correctors and Antioxidants Partially Normalize Lipid Imbalance but not Abnormal Basal Inflammatory Cytokine Profile in CF Bronchial Epithelial Cells.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Subject

View Samples
accession-icon GSE100543
Affy MA Comparison of Porcine Esophageal Submucosal Glands (ESMGs), overlying squamous tissue, and ESMG-derived spheroids
  • organism-icon Sus scrofa
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Porcine Gene 1.0 ST Array (porgene10st)

Description

Microarray analysis was used to compare the transcriptome of esophageal submucosal gland (ESMG) derived spheroids in culture relative to squamous epithelium and fresh ESMGs.

Publication Title

Porcine Esophageal Submucosal Gland Culture Model Shows Capacity for Proliferation and Differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP066865
miRNA-1343 attenuates pathways of fibrosis by targeting the TGF-beta receptors [RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

miRNA-1343 is an uncharacterized miRNA predicted to target a number of genes involved in epithelial cell function including TGF-beta signaling, cell adhesion, and cell proliferation. We transiently overexpressed miRNA-1343 or a non-targeting control miRNA in A549 and 16HBE14o- human airway cell lines. As predicted, RNA-seq following miRNA-1343 overexpression showed significant downregulation of genes involved in these pathways. Furthermore, genes involved in cholesterol and lipid biosynthesis were found to be significantly upregulated by miRNA-1343 overexpression. Overall design: mRNA profiles from A549 and 16HBE14o- cells transiently transfected with miRNA-1343 or a negative control (NC) miRNA, in quintuplicate.

Publication Title

miR-1343 attenuates pathways of fibrosis by targeting the TGF-β receptors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13477
Gene Expression Analysis of ARC (NSC 188491) Treated MCF7 cells
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

ARC (NSC 188491, SMA-491), 4-amino-6-hydrazino-7-beta-d-ribofuranosyl-7H-pyrrolo-(2,3-d)-pyrimidine-5-carboxamide, is a nucleoside analog with profound in vitro anti-cancer activity. First identified in a high-throughput screen for inhibitors of p21 mRNA expression, subsequent experiments showed that ARC also repressed expression of hdm2 and survivin, leading to its classification as a global inhibitor of transcription 1. The following Hu U133 plus 2.0 arrays represent single time point (24 hour) gene expression analysis of transcripts altered by ARC treatment. Arrays for the other compounds (sangivamycin and doxorubicin) are included as comparators.

Publication Title

ARC (NSC 188491) has identical activity to Sangivamycin (NSC 65346) including inhibition of both P-TEFb and PKC.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE8391
Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component
  • organism-icon Drosophila melanogaster
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2), Affymetrix Drosophila Genome Array (drosgenome1)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP033129
Differential gene expression in nephron progenitors lacking miR-17~92
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Purpose: The goal of this study is to compare the differential expression of transcripts in control kidneys compared to kidneys lacking the miR-17~92 cluster in nephron progenitors and their derivatives by RNA-seq to identify potential miRNA targets in the mutant kidneys. Overall design: mRNA profiles of control and mutant (=Six2-TGC; miR-17~92 flx/flx) embryonic day 16 kidneys were generated by deep sequencing, in triplicate, using Illumina HiSeq2000

Publication Title

MicroRNA-17~92 is required for nephrogenesis and renal function.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7646
CLK targets from fly heads
  • organism-icon Drosophila melanogaster
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome Array (drosgenome1)

Description

CLK targets from fly heads using the TIM-GAL4; UAS-CLKGR line

Publication Title

Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7652
Timepoints Control strain
  • organism-icon Drosophila melanogaster
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

6 Timepoint microarray from control strain

Publication Title

Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7651
Timepoints 5073 strain
  • organism-icon Drosophila melanogaster
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

6 Timepoints from 5073 strain

Publication Title

Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7644
CLKGR in S2 cells
  • organism-icon Drosophila melanogaster
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome Array (drosgenome1)

Description

Experiments performed in S2 cells to identify direct CLK targets

Publication Title

Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact