refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 419 results
Sort by

Filters

Technology

Platform

accession-icon GSE15118
IGFBP-3 is regulated by Gli signaling in cartilage tumors.
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Mice that develop benign cartilage lesions due to overexpression of Gli2 in chondrocytes developed lesions similar to chondrosarcomas when also deficient in p53. Gli2 overexpression and p53 deficiency had opposing effects on chondrocyte differentiation, but had additive effects negatively regulating apoptosis. Regulation of Igfbp3 expression and IGF signaling by Gli and p53 integrated their effect on apoptosis. Treatment of human chondrosarcomas or fetal mouse limbs explants with IGFBP3 or by blocking IGF increased the apoptosis rate, and mice expressing Gli2 developed substantially fewer tumors when also deficient for Igf2. IGF signaling meditated apoptosis regulates the progression to malignant chondrosarcoma.

Publication Title

Gli2 and p53 cooperate to regulate IGFBP-3- mediated chondrocyte apoptosis in the progression from benign to malignant cartilage tumors.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP064981
Gut Microbiota Orchestrates Energy Homeostasis during Cold [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Microbial functions in the host physiology are a result of co-evolution between microbial communities and their hosts. Here we show that cold exposure leads to marked shift of the microbiota composition, referred to as cold microbiota. Transplantation of the cold microbiota to germ-free mice is sufficient to increase the insulin sensitivity of the host, and enable complete tolerance to cold partly by promoting the white fat browning, leading to increased energy expenditure and fat loss. During prolonged cold however, the body weight loss is attenuated, caused by adaptive mechanisms maximising caloric uptake and increasing intestinal, villi and microvilli lengths. This increased absorptive surface is promoted by the cold microbiota - effect that can be diminished by co-transplanting the most downregulated bacterial strain from the Verrucomicrobia phylum, Akkermansia muciniphila, during the cold microbiota transfer. Our results demonstrate the microbiota as a key factor orchestrating the overall energy homeostasis during increased demand. Overall design: Mice were kept 30 days at room temperature or at 6C, 2 per cage, under SPF conditions, with or without administration of antibiotic coctail in drinking water (whole microbiota depletion). Fasted 5h before sacrifice. Segments of proximal jejunum were isoated, flushed gently with PBS and frozen. Each of 12 samples is a pool of two biological replicates (2 biological replicates of the same condition combined into one sample)

Publication Title

Gut Microbiota Orchestrates Energy Homeostasis during Cold.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE84571
Treatment of Venous Leg Ulcers with a Bioengineered Living Cell Construct Reactivates the Acute Wound Healing Response
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Chronic non-healing venous leg ulcers (VLUs) are a widespread debilitating disease with high morbidity and associated costs, as approximately $15 billion annually are spent on the care of VLUs. Despite their socioeconomic burden, there is a paucity of novel treatments targeted towards healing VLUs, which can be attributed to both lack of pathophysiologic insight into VLU development as well as lack of knowledge regarding biologic actions of VLU-targeted therapies. Currently, the bioengineered bilayered living cellular construct (BLCC) skin substitute is the only FDA-approved biologic treatment for healing VLUs. To elucidate the mechanisms through which the BLCC promotes healing of chronic VLUs, we conducted a clinical trial (NCT01327937) in which patients with non-healing VLUs were treated with either standard care (compression therapy) or with BLCC together with standard care. Tissue was collected from the VLU edge before and 1 week after treatment, and samples underwent comprehensive microarray, mRNA and protein analyses. Ulcers treated with BLCC skin substitute displayed three distinct patterns suggesting the mechanisms by which BLCC shifted a non-healing into a healing tissue response: it modulated inflammatory and growth factor signaling; it activated keratinocytes; and it attenuated Wnt/-catenin signaling. In these ways, BLCC application orchestrated a shift of the chronic non-healing ulcer microenvironment into a distinctive healing milieu resembling that of an acute, healing wound. Our findings also provide first patient-derived in vivo evidence of specific biologic processes that can be targeted in the design of therapies to promote healing of chronic VLUs.

Publication Title

A bioengineered living cell construct activates an acute wound healing response in venous leg ulcers.

Sample Metadata Fields

Specimen part, Disease stage, Time

View Samples
accession-icon GSE17732
Whole blood gene expression data from PFAPA syndrome
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

PFAPA, the syndrome of periodic fever associated with aphthous stomatitis, pharyngitis and/or cervical adenitis, is the most common periodic fever disease in children. Cases are mostly sporadic; the etiopathogenesis is unknown.

Publication Title

Periodic fever, aphthous stomatitis, pharyngitis, and adenitis (PFAPA) is a disorder of innate immunity and Th1 activation responsive to IL-1 blockade.

Sample Metadata Fields

Sex, Age, Disease, Disease stage, Subject

View Samples
accession-icon GSE69082
Gene expression signature after klotho knockdown in HCC1395 triple negative breast cancer cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Klotho is critical for the survival of triple negative breast cancer (TNBC) cells HCC1395, since its depletion leads to decreased cell viability, cell cycle arrest and apoptosis.

Publication Title

γKlotho is a novel marker and cell survival factor in a subset of triple negative breast cancers.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE80178
Genomic Profiling of Diabetic Foot Ulcers Identifies miR-15b-5p as a Major Regulator that Leads to Suboptimal Inflammatory Response and Diminished DNA Repair Mechanisms
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Diabetic foot ulcers (DFUs) are the leading cause of lower leg amputations in diabetic population. To better understand molecular pathophysiology of DFUs we used patients specimens and genomic profiling. We identified 3900 genes specifically regulated in DFUs. Moreover, we compared DFU to human skin acute wound (AW) profiles and found DNA repair mechanisms and regulation of gene expression among the processes specifically suppressed in DFUs, whereas essential wound healing-related processes, inflammatory/immune response or cell migration, were not activated properly. To identify potential regulators of DFU-specific genes, we used upstream target analysis. We found miR-15/16 family enriched in DFUs, but not in AW, which was confirmed by qPCR. We found that infection with the most common DFU colonizer, Staphylococcus aureus, triggers induction of miR-15-5p, which in turn, targets multiple DFU-specific genes, including genes involved in DNA repair (WEE1, MSH2 and RAD50) and the regulator of inflammatory pathway, IKBKB. Induction of miR-15b-5p, either by miR-mimic transfection in vitro or by S. aureus infection of acute wounds ex vivo, suppressed both WEE1 and IKBKB. Consequently, we detected an increase in DNA double strand breaks in DFUs. In summary, our data indicate that S. aureus infection, via induction of miR-15b-5p, may lead to suppression of DNA repair mechanisms and a sub-optimal inflammatory response, contributing to pathophysiology of DFU patients

Publication Title

Staphylococcus aureus Triggers Induction of miR-15B-5P to Diminish DNA Repair and Deregulate Inflammatory Response in Diabetic Foot Ulcers.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE31048
Expression data from normal B cells and chronic lymphocytic leukemia B cells -- with/without treatment of Wnt3a
  • organism-icon Homo sapiens
  • sample-icon 220 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Wnt pathway is dysregulated in CLL-We characterized Wnt pathway gene expression in normal B and CLL-B cells and identified Wnt targets in normal B and CLL-B cells through this data set.

Publication Title

Somatic mutation as a mechanism of Wnt/β-catenin pathway activation in CLL.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE37168
Expression data from chronic lymphocytic leukemia (CLL) tumors in two time points
  • organism-icon Homo sapiens
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

As part of a large genetic evolution study we also acquired 3'UTR expression arrays at two time points for the same 18 patients with CLL.

Publication Title

Evolution and impact of subclonal mutations in chronic lymphocytic leukemia.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Subject, Time

View Samples
accession-icon GSE22298
Human epidermal keratinocytes treated with retinoic acid or thyroid hormone
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Targets of Retinoic Acid (RA) were identified in primary human epidermal keratinocytes grown in the presence or absence of all-trans retinoic acid for 1, 4, 24, 48 and 72 hours. Targets of Thyroid Hormone (T3) were identified in primary human epidermal keratinocytes grown in the presence or absence of the hormone; same controls as for RA.

Publication Title

Retinoid-responsive transcriptional changes in epidermal keratinocytes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE26487
Effects of Glucocorticoids in Epidermal Keratinocytes
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

Glucocorticoids (GCs) have a long history of use as therapeutic agents for numerous skin diseases. Surprisingly, their specific molecular effects are largely unknown. To characterize GC action in epidermis, we compared the transcriptional profiles of primary human keratinocytes untreated and treated with dexamethasone (DEX) for 1, 4, 24, 48 and 72 hours using large-scale microarray analyses. The majority of genes were found regulated only after 24 hours and remained regulated throughout the treatment. In addition to expected anti-inflammatory genes, we found that GCs regulate cell fate, tissue remodeling, cell motility, differentiation and metabolism. GCs not only effectively block signaling by TNF-alpha and IL-1 but also by IFN-gamma, which was not previously known. Specifically, GCs suppress the expression of essentially all IFN-gamma-regulated genes, including IFN-gamma receptor and STAT-1. GCs also block STAT-1 activation and nuclear translocation. Unexpectedly, GCs have anti-apoptotic effects in keratinocytes by inducing the expression of anti-apoptotic and repressing pro-apoptotic genes. Consequently, GCs treatment blocked UV-induced apoptosis of keratinocytes. GCs have a profound effect on wound healing by inhibiting cell motility and the expression of pro-angiogenic factor VEGF. They play an important role in tissue remodeling and scar formation by suppressing the expression of TGF-beta-1 and -2, MMP1, 2, 9 and 10 and inducing TIMP-2. Finally, GCs promote terminal stages of epidermal differentiation while simultaneously inhibiting the early stages. These results provide new insights into the beneficial and adverse effects of GCs in epidermis, defining the participating genes and mechanisms that coordinate the cellular responses important for GC-based therapies.

Publication Title

Novel genomic effects of glucocorticoids in epidermal keratinocytes: inhibition of apoptosis, interferon-gamma pathway, and wound healing along with promotion of terminal differentiation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact