refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 4 of 4 results
Sort by

Filters

Technology

Platform

accession-icon GSE2842
Additional systems to Prednisolone treated childhood ALL samples
  • organism-icon Homo sapiens
  • sample-icon 45 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Glucocorticoids (GC) are in most chemotherapy protocols for lymphoid malignancies, particularly childhood acute lymphoblastic leukaemia (ALL) for their ability to induce apoptosis in malignant blast. The underlying mechanism, however, has so far only been investigated in model systems. This study comprises Affymetrix hgu133 plus 2.0 analyses of

Publication Title

Identification of glucocorticoid-response genes in children with acute lymphoblastic leukemia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE2677
Prednisolone treated childhood ALL samples
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Glucocorticoids (GC) are in most chemotherapy protocols for lymphoid malignancies, particularly childhood acute lymphoblastic leukaemia (ALL) for their ability to induce apoptosis in malignant blast. The underlying mechanism, however, has so far only been investigated in model systems. This study comprises Affymetrix hgu133 plus 2.0 analyses of

Publication Title

Identification of glucocorticoid-response genes in children with acute lymphoblastic leukemia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE2843
thymic mouse cells
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Glucocorticoids (GC) are in most chemotherapy protocols for lymphoid malignancies, particularly childhood acute lymphoblastic leukaemia (ALL) for their ability to induce apoptosis in malignant blast. The underlying mechanism, however, has so far only been investigated in model systems. This study comprises Affymetrix hgu133 plus 2.0 analyses of

Publication Title

Identification of glucocorticoid-response genes in children with acute lymphoblastic leukemia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP185597
Effect of PTBA on acute kidney injury during AKI
  • organism-icon Danio rerio
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

PTBA has been published to increase renal tubular cell proliferation, increased survival, and increased renal functional recovery in fish and various models of murine models of acute kidney injury. Immunohistological analyses suggested increased cell proliferation is accompanied by increased epithelial-to-mesenchymal transition in the RTECs. In order to elucidate pathways responsible for the increased repair response after compound treatment, larval zebrafish were given AKI and treated with PTBA analogue, UPHD25 or DMSO. Results suggests that epithelial-related genes were downregulated while mesenchymal-related genes were upregulated with injury and compound treatment. Results further validate our immunohistological finding that our compound increase post-AKI repair by increasing EMT in renal tubular cells. Overall design: At 3dpf, larval zebrafish are given acute kidney injury with gentamicin microinjection. 2 days post injury, larvae with AKI are selected and treated with 1uM of PTBA analogue, UPHD25 or vehicle control, 1% DMSO. The fish were treated with UPHD25 or DMSO for 24 hours. Then, pronephric kidneys were collected using DDT, collagenase I, and manual collection. Total 100 larvae were collected per sample, per replicate. Each treatment group was repeated with 3 biological replicates. RNA was collected and sequenced.

Publication Title

Enhancing regeneration after acute kidney injury by promoting cellular dedifferentiation in zebrafish.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact