refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 44 results
Sort by

Filters

Technology

Platform

accession-icon GSE100833
A functional genomics predictive network model identifies regulators of inflammatory bowel disease: Microarray Analysis of Human Blood and Intestinal Biopsy Samples from a Phase 2b, Double-blind, Placebo-controlled Study of Ustekinumab in Crohn's Disease
  • organism-icon Homo sapiens
  • sample-icon 477 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

Microarray Analysis of Human Whole Blood and Intestinal Biopsy Samples from a Phase 2b, Multicenter, Randomized, Double-blind, Placebo-controlled, Parallel-group Study of Ustekinumab in Crohns Disease

Publication Title

A functional genomics predictive network model identifies regulators of inflammatory bowel disease.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Treatment

View Samples
accession-icon SRP077046
A functional genomics predictive network model identifies regulators of inflammatory bowel disease: Mount Sinai Hospital (MSH) Population Specimen Collection and Profiling of Inflammatory Bowel Disease
  • organism-icon Homo sapiens
  • sample-icon 125 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

This study focuses on inflammatory bowel disease gene expression profiling. Surgical specimens from 134 patients undergoing bowel resection for inflammatory bowel disease (IBD) and non IBD controls at Mount Sinai Medical Center were collected as the source of tissue. Control samples (CLs) were harvested from normal non inflamed bowel located more than 10 cm away from the tumor from patients undergoing bowel resection for sporadic colon cancer. Ulcerative colitis (UC) and Crohn’s (CD) patient samples were all isolated from areas containing moderate to severe inflammation. The diagnostic pathology report for each specimen was provided by the Mount Sinai Hospital Pathology Department. Patients with UC and patients with CD shared common medications including corticosteroids, infliximab, azathioprine, and mesalamine. Overall design: Surgical specimens from 134 patients undergoing bowel resection for inflammatory bowel disease (IBD) and non IBD controls at Mount Sinai Medical Center were collected as the source of tissue. Control samples (CLs) were harvested from normal non inflamed bowel located more than 10 cm away from the tumor from patients undergoing bowel resection for sporadic colon cancer. Ulcerative colitis (UC) and Crohn’s (CD) patient samples were all isolated from areas containing moderate to severe inflammation. The diagnostic pathology report for each specimen was provided by the Mount Sinai Hospital Pathology Department. Patients with UC and patients with CD shared common medications including corticosteroids, infliximab, azathioprine, and mesalamine. The samples were collected fresh and the tissue was further processed for isolation. A representative 0.5 cm tissue fragment was isolated from the collected surgical specimen samples, flash frozen and stored at -80C. Tissue was homogenized in Trizol following the manufacturer''s protocol (Life Technologies) and RNA extraction was performed. RIN scores >7 were used for Poly A RNA-seq.

Publication Title

A functional genomics predictive network model identifies regulators of inflammatory bowel disease.

Sample Metadata Fields

Sex, Subject

View Samples
accession-icon GSE71620
The effects of aging on circadian patterns of gene expression in the human prefrontal cortex
  • organism-icon Homo sapiens
  • sample-icon 419 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

With aging, significant changes in circadian rhythms occur, including a shift in phase toward a morning chronotype and a loss of rhythmicity in circulating hormones. However, the effects of aging on molecular rhythms in the human brain have remained elusive. Here we employed a previously-described time-of-death analyses to identify transcripts throughout the genome that have a significant circadian rhythm in expression in the human prefrontal cortex (Brodmanns areas (BA) 11 and 47). Expression levels were determined by microarray analysis in 146 individuals. Rhythmicity in expression was found in ~10% of detected transcripts (p<0.05). Using a meta-analysis across the two brain areas, we identified a core set of 235 genes (q<0.05) with significant circadian rhythms of expression. These 235 genes showed 92% concordance in the phase of expression between the two areas. In addition to the canonical core circadian genes, a number of other genes were found to exhibit rhythmic expression in the brain. Notably, we identified more than one thousand genes (1186 in BA11; 1591 in BA47) that exhibited age-dependent rhythmicity or alterations in rhythmicity patterns with aging. Interestingly, a set of transcripts gained rhythmicity in older individuals, which may represent a compensatory mechanism due to a loss of canonical clock function. Thus, we confirm that rhythmic gene expression can be reliably measured in human brain and identified for the first time significant changes in molecular rhythms with aging that may contribute to altered cognition, sleep and mood in later life.

Publication Title

Effects of aging on circadian patterns of gene expression in the human prefrontal cortex.

Sample Metadata Fields

Sex, Age, Specimen part, Race

View Samples
accession-icon GSE54565
Expression data from human brain anterior cingulate cortex - including control samples and samples with major depression disorders (32 samples MD1_ACC)
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Major depressive disorder is a heterogeneous illness with a mostly uncharacterized pathology. Large scale gene expression (transcriptome) analysis and genome-wide association studies (GWAS) for single nucleotide polymorphisms have generated a considerable amount of gene- and disease-related information, but heterogeneity and various sources of noise have limited the discovery of disease mechanisms. As systematic dataset integration is becoming essential, we developed methods and performed meta-clustering of gene coexpression links in 11 transcriptome studies from postmortem brains of human subjects with major depressive disorder (MDD) and non-psychiatric control subjects. We next sought enrichment in the top 50 meta-analyzed coexpression modules for genes otherwise identified by GWAS for various sets of disorders. One coexpression module of 88 genes was consistently and significantly associated with GWAS for MDD, other neuropsychiatric disorders and brain functions, and for medical illnesses with elevated clinical risk of depression, but not for other diseases (See publication for details).

Publication Title

A conserved BDNF, glutamate- and GABA-enriched gene module related to human depression identified by coexpression meta-analysis and DNA variant genome-wide association studies.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE54568
Expression data from human brain dorsolateral prefrontal cortex - including control samples and samples with major depression disorders (30 samples BA9_F)
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Major depressive disorder is a heterogeneous illness with a mostly uncharacterized pathology. Large scale gene expression (transcriptome) analysis and genome-wide association studies (GWAS) for single nucleotide polymorphisms have generated a considerable amount of gene- and disease-related information, but heterogeneity and various sources of noise have limited the discovery of disease mechanisms. As systematic dataset integration is becoming essential, we developed methods and performed meta-clustering of gene coexpression links in 11 transcriptome studies from postmortem brains of human subjects with major depressive disorder (MDD) and non-psychiatric control subjects. We next sought enrichment in the top 50 meta-analyzed coexpression modules for genes otherwise identified by GWAS for various sets of disorders. One coexpression module of 88 genes was consistently and significantly associated with GWAS for MDD, other neuropsychiatric disorders and brain functions, and for medical illnesses with elevated clinical risk of depression, but not for other diseases (See publication for details).

Publication Title

A conserved BDNF, glutamate- and GABA-enriched gene module related to human depression identified by coexpression meta-analysis and DNA variant genome-wide association studies.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE54566
Expression data from human brain amygdala - including control samples and samples with major depression disorders (28 samples MD1_AMY)
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Major depressive disorder is a heterogeneous illness with a mostly uncharacterized pathology. Large scale gene expression (transcriptome) analysis and genome-wide association studies (GWAS) for single nucleotide polymorphisms have generated a considerable amount of gene- and disease-related information, but heterogeneity and various sources of noise have limited the discovery of disease mechanisms. As systematic dataset integration is becoming essential, we developed methods and performed meta-clustering of gene coexpression links in 11 transcriptome studies from postmortem brains of human subjects with major depressive disorder (MDD) and non-psychiatric control subjects. We next sought enrichment in the top 50 meta-analyzed coexpression modules for genes otherwise identified by GWAS for various sets of disorders. One coexpression module of 88 genes was consistently and significantly associated with GWAS for MDD, other neuropsychiatric disorders and brain functions, and for medical illnesses with elevated clinical risk of depression, but not for other diseases (See publication for details).

Publication Title

A conserved BDNF, glutamate- and GABA-enriched gene module related to human depression identified by coexpression meta-analysis and DNA variant genome-wide association studies.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE54567
Expression data from human brain dorsolateral prefrontal cortex - including control samples and samples with major depression disorders (28 samples BA9_M)
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Major depressive disorder is a heterogeneous illness with a mostly uncharacterized pathology. Large scale gene expression (transcriptome) analysis and genome-wide association studies (GWAS) for single nucleotide polymorphisms have generated a considerable amount of gene- and disease-related information, but heterogeneity and various sources of noise have limited the discovery of disease mechanisms. As systematic dataset integration is becoming essential, we developed methods and performed meta-clustering of gene coexpression links in 11 transcriptome studies from postmortem brains of human subjects with major depressive disorder (MDD) and non-psychiatric control subjects. We next sought enrichment in the top 50 meta-analyzed coexpression modules for genes otherwise identified by GWAS for various sets of disorders. One coexpression module of 88 genes was consistently and significantly associated with GWAS for MDD, other neuropsychiatric disorders and brain functions, and for medical illnesses with elevated clinical risk of depression, but not for other diseases (See publication for details).

Publication Title

A conserved BDNF, glutamate- and GABA-enriched gene module related to human depression identified by coexpression meta-analysis and DNA variant genome-wide association studies.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE54571
Expression data from human brain anterior cingulate cortex - including control samples and samples with major depression disorders (26 samples BA25_F)
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Major depressive disorder is a heterogeneous illness with a mostly uncharacterized pathology. Large scale gene expression (transcriptome) analysis and genome-wide association studies (GWAS) for single nucleotide polymorphisms have generated a considerable amount of gene- and disease-related information, but heterogeneity and various sources of noise have limited the discovery of disease mechanisms. As systematic dataset integration is becoming essential, we developed methods and performed meta-clustering of gene coexpression links in 11 transcriptome studies from postmortem brains of human subjects with major depressive disorder (MDD) and non-psychiatric control subjects. We next sought enrichment in the top 50 meta-analyzed coexpression modules for genes otherwise identified by GWAS for various sets of disorders. One coexpression module of 88 genes was consistently and significantly associated with GWAS for MDD, other neuropsychiatric disorders and brain functions, and for medical illnesses with elevated clinical risk of depression, but not for other diseases (See publication for details).

Publication Title

A conserved BDNF, glutamate- and GABA-enriched gene module related to human depression identified by coexpression meta-analysis and DNA variant genome-wide association studies.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE54570
Expression data from human brain dorsolateral prefrontal cortex - including control samples and samples with major depression disorders (26 samples NY_BA9)
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Major depressive disorder is a heterogeneous illness with a mostly uncharacterized pathology. Large scale gene expression (transcriptome) analysis and genome-wide association studies (GWAS) for single nucleotide polymorphisms have generated a considerable amount of gene- and disease-related information, but heterogeneity and various sources of noise have limited the discovery of disease mechanisms. As systematic dataset integration is becoming essential, we developed methods and performed meta-clustering of gene coexpression links in 11 transcriptome studies from postmortem brains of human subjects with major depressive disorder (MDD) and non-psychiatric control subjects. We next sought enrichment in the top 50 meta-analyzed coexpression modules for genes otherwise identified by GWAS for various sets of disorders. One coexpression module of 88 genes was consistently and significantly associated with GWAS for MDD, other neuropsychiatric disorders and brain functions, and for medical illnesses with elevated clinical risk of depression, but not for other diseases (See publication for details).

Publication Title

A conserved BDNF, glutamate- and GABA-enriched gene module related to human depression identified by coexpression meta-analysis and DNA variant genome-wide association studies.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE19083
Microarray analysis of mediastinal lymph node of pigs naturally affected by postweaning multisystemic wasting syndrome
  • organism-icon Sus scrofa
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

Postweaning multisystemic wasting syndrome (PMWS) is one of the pig diseases with major economic impact worldwide. Clinical, pathologic and some immunologic aspects of this disease are well-known, but the molecular mechanisms underlying pathogenic mechanisms of the disease are still poorly understood. The objective of the present study was to investigate the global changes in gene expression in the mediastinal lymph nodes from pigs naturally affected by PMWS and healthy counterparts, using the Affymetrix Porcine Genechip. This is the first study on gene expression in pigs naturally affected by PMWS. The present results allowed identifying potential mechanisms underlying the inflammation, lymphocyte depletion in lymphoid tissues and immune suppression, which are key features of PMWS.

Publication Title

Microarray analysis of mediastinal lymph node of pigs naturally affected by postweaning multisystemic wasting syndrome.

Sample Metadata Fields

Age, Specimen part, Disease, Disease stage

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact