refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1252 results
Sort by

Filters

Technology

Platform

accession-icon GSE71725
Identification of a new gene regulatory circuit involving B cell receptor activated signaling using a combined analysis of experimental, clinical and global gene expression data
  • organism-icon Homo sapiens
  • sample-icon 127 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2), Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Identification of a new gene regulatory circuit involving B cell receptor activated signaling using a combined analysis of experimental, clinical and global gene expression data.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Time

View Samples
accession-icon GSE71721
Identification of a new gene regulatory circuit involving B cell receptor activated signaling using a combined analysis of experimental, clinical and global gene expression data [timeSeries]
  • organism-icon Homo sapiens
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

To discover new essential regulatory pathways in B lymphoma cells a combined analysis of experimental and clinical high throughput data was performed. Among others, a specific cluster of coherently expressed genes named BCR.1 was identified in primary lymphoma samples. These coherently expressed genes are suppressed by -IgM treatment of lymphoma cells in vitro. This B cell receptor activation leads to a G2 phase prolongation, delayed entry into the M phase, an overall diminished capacity of the cells to enter into mitosis and defects in metaphases. Cytogenetic changes are detected under long term -IgM treatment. Furthermore, an inverse correlation of BCR.1 genes with c-Myc coregulated genes in distinct groups of lymphoma patients is observed. In addition to the impact of c-Myc in the regulation of cell cycle regulators, BCR.1 genes are regulated by a combined action of IKK2, MAPK14 and JNK. Finally, the BCR.1 index discriminates activated B cell like and germinal centre B cell like diffuse large B cell lymphoma. Therefore, a new regulatory circuit is described affecting cell cycle and chromosome instability in B cells.

Publication Title

Identification of a new gene regulatory circuit involving B cell receptor activated signaling using a combined analysis of experimental, clinical and global gene expression data.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE71724
Identification of a new gene regulatory circuit involving B cell receptor activated signaling using a combined analysis of experimental, clinical and global gene expression data [tonsil]
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To discover new essential regulatory pathways in B lymphoma cells a combined analysis of experimental and clinical high throughput data was performed. Among others, a specific cluster of coherently expressed genes named BCR.1 was identified in primary lymphoma samples. These coherently expressed genes are suppressed by -IgM treatement of lymphoma cells in vitro. This B cell receptor activation leads to a G2 phase prolongation, delayed entry into the M phase, an overall diminished capacity of the cells to enter into mitosis and defects in metaphases. Cytogenetic changes are detected under long term -IgM treatment. Furthermore, an inverse correlation of BCR.1 genes with c-Myc coregulated genes in distinct groups of lymphoma patients is observed. In addition to the impact of c-Myc in the regulation of cell cycle regulators, BCR.1 genes are regulated by a combined action of IKK2, MAPK14 and JNK. Finally, the BCR.1 index discriminates activated B cell like and germinal centre B cell like diffuse large B cell lymphoma. Therefore, a new regulatory circuit is described affecting cell cycle and chromosome instability in B cells.

Publication Title

Identification of a new gene regulatory circuit involving B cell receptor activated signaling using a combined analysis of experimental, clinical and global gene expression data.

Sample Metadata Fields

Specimen part

View Samples
accession-icon DRP003299
Gene expression of granulosa cells and oocytes in sus scrofa
  • organism-icon Sus scrofa
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Gene expression was examined in granulosa cells and oocytes in various stage of follicle and in vitro grown oocytes and granulosa cells complexes in sus scrofa.

Publication Title

Gene expression patterns in granulosa cells and oocytes at various stages of follicle development as well as in in vitro grown oocyte-and-granulosa cell complexes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE55285
Expression data from undifferentiated human ES cell line, khES3, grown using complete, methionine, leucine or lysine deprived media and ES cell derived endoderm
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE55283
Expression data from undifferentiated human ES cell line, khES3, grown using complete or methionine deprived media and ES cell derived endoderm
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In undifferentiated human ES cells, 5hr Met deprivation (delta Met) led to decreased proliferation, and prolonged 24hr Met deprivation resulted in G0-G1 phase cell cycle arrest, which then led to apoptosis.

Publication Title

Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE55284
Expression data from undifferentiated human ES cell line, khES3 grown using complete, leucine or lysine deprived media
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In undifferentiated human ES cells, 48hr Leucine deprivation (delta Leu) or Lysine deprivation (delta Lys) led to apoptosis.

Publication Title

Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE145367
GeneChip Expression Array
  • organism-icon Rattus norvegicus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gene expression analysis to compare control cells and sorted cells

Publication Title

Identification of two major autoantigens negatively regulating endothelial activation in Takayasu arteritis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP188416
Transcriptome analysis of cultured human alveolar epithelial type 2 cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIon Torrent S5

Description

We investigated whether in vitro expansion of human alveolar epithelial type II cells is possible. We found that human endogenous human alveolar epithelial type II cells can be cultured and passaged. The culture system enabled retroviral gene transduction into human alveolar epithelial type II cells. We performed RNA sequencing of human alveolar epithelial type II cells transduced with mutant surfactant protein C or control vector. Overall design: Cultured human alveolar epithelial type II cells were transfected with retroviral vector containing mutant surfactant protein C or control retroviral vector. The retroviral vector contained LNGFR as a marker. After gene transduction, transduced cells were purified by magnetic-activated cell sorting. The transcriptome of the cells was generated by 5'Tag-seq using Ion Genestudio S5 Sequencer.

Publication Title

In vitro expansion of endogenous human alveolar epithelial type II cells in fibroblast-free spheroid culture.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP140447
Transcriptome analysis of lung epithelial cells and lung fibroblasts from various developmental stages (E18.5, P0.5, P2, P7, P28, and P56)
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

In the alveoli, lung fibroblasts are in close contact with alveolar epithelial cells type 2, and are considered to support alveolar epithelial cells, forming an alveolar stem cell niche. However, what fibroblast-to-epithelial cell interactions occur during the alveolar maturation stage remains unclear. To understand the lung fibroblast-to-epithelial cell interactions, we performed time-course 3´SAGE-seq analysis of lung epithelial cells and fibroblasts. Overall design: Lung epithelial cells and lung fibroblasts from various developmental stages (E18.5, P0.5, P2, P7, P28, and P56) were purified by cell sorting. The time series transcriptome of the epithelial cells and fibroblasts was generated by 3'SAGE-seq using Ion Proton sequencer.

Publication Title

Mesenchymal-Epithelial Interactome Analysis Reveals Essential Factors Required for Fibroblast-Free Alveolosphere Formation.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact