refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 259 results
Sort by

Filters

Technology

Platform

accession-icon GSE31180
Patterns of cancer development and progression in the protein-protein interaction network
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

For this study we selected a gene, -synuclein (SNCA), that is consistently under-expressed in MCF7 cells and breast tumors. Following transfection with an SNCA expression construct, two stable MCF7 clones (named MCF7-SNCA #1 and 2) were selected and examined for expression differences relative to the parental MCF7 cells.

Publication Title

Cancer develops, progresses and responds to therapies through restricted perturbation of the protein-protein interaction network.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE20361
Dynamic changes during adaptation to estrogen deprivation in MCF7 cell line
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Endocrine therapies targeting the proliferative effect of 17-estradiol (17E2) through estrogen receptor (ER) are the most effective systemic treatment of ER-positive breast cancer. However, most breast tumors initially responsive to these therapies develop resistance through a molecular mechanism that is not yet fully understood. The long-term estrogen-deprived (LTED) MCF7 cell model has been proposed to recapitulate acquired resistance to aromatase inhibitors (AIs) in postmenopausal women. To elucidate this resistance, genomic, transcriptomic and molecular data were integrated into the time course of MCF7-LTED adaptation. Dynamic and widespread genomic changes were observed, including amplification of the ESR1 locus consequently linked to an increase in ER. Dynamic transcriptomic profiles were also observed that correlated significantly with genomic changes and were influenced by transcription factors known to be involved in acquired resistance or cell proliferation (e.g. IRF1 and E2F1, respectively) but, notably, not by canonical ER transcriptional function. Consistently, at the molecular level, activation of growth factor signaling pathways by EGFR/ERBB/AKT and a switch from phospho-Ser118 (pS118)- to pS167-ER were observed during MCF7-LTED adaptation. Evaluation of relevant clinical settings identified significant associations between MCF7-LTED and breast tumor transcriptome profiles that characterize ER-negative status, early response to letrozole and recurrence after tamoxifen treatment. This study proposes a mechanism for acquired resistance to estrogen deprivation that is coordinated across biological levels and independent of canonical ER function.

Publication Title

Biological reprogramming in acquired resistance to endocrine therapy of breast cancer.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE71482
Expression data from Caenorhabditis elegans fed with a Lactoferrin-based product
  • organism-icon Caenorhabditis elegans
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Lactoferrin is a highly multifunctional protein. Indeed, it is involved in many physiological functions, including regulation of iron absorption and immune responses.

Publication Title

A nutritional supplement containing lactoferrin stimulates the immune system, extends lifespan, and reduces amyloid <i>β</i> peptide toxicity in <i>Caenorhabditis elegans</i>.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP116025
Time-course transcriptome of regeneration [RNA-Seq]
  • organism-icon Drosophila melanogaster
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

The ability to regenerate or recover from injuries varies greatly not only between species but also between tissues and organs or developmental stages of the same species. The mechanisms behind these different regenerative capabilities are ultimately dependent on the control of genome activity, determined by a complex interplay of regulatory elements functioning at the level of chromatin. Resetting of gene expression patterns during injury responses is, thus, shaped by the coordinated action of genomic regions (enhancers, silencers) that integrate the activity of multiple sequence-specific DNA binding proteins (transcription factors and cofactors). Using  genome- wide approaches to interrogate chromatin function here we identify the regulatory elements governing tissue recovery in Drosophila wing imaginal discs, which show a high regenerative capacity after genetically induced cell death. Our findings point to a global co-regulation of gene expression and provide evidence for Damage Responding Regulatory Elements (DRRE), some of which are novel whereas others are also used in other tissues or developmental stages. Overall design: We collected data at different time points (0, 15 and 25h) after apoptosis induction. These time periods were selected because they included the most important transcriptional responses to apoptosis, ranging from the earliest gene expression up to complete re-patterning. Discs kept at the same conditions without inducing cell death were used as controls.

Publication Title

Damage-responsive elements in <i>Drosophila</i> regeneration.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE68324
Expression data from MCF7 cells: control or tuberin-depleted
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Analysis of the expression profiles of MCF7 cells transduced with a control shRNA and an TSC2-targeted shRNA (leading to tuberin depletion).

Publication Title

Lymphangioleiomyomatosis Biomarkers Linked to Lung Metastatic Potential and Cell Stemness.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE71662
Gene expression data from mouse squamous cell carcinoma cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We describe a function of focal adhesion kinase (FAK) in driving anti-tumor immune evasion. The kinase activity of nuclear-targeted FAK in squamous cancer cells drives exhaustion of CD8+ T-cells and recruitment of regulatory T-cells by transcriptionally regulating chemokine/cytokine and ligand-receptor networks, including transcription of Ccl5 that is crucial. These changes inhibit antigen-primed cytotoxic CD8+ T-cell activity, permitting growth of FAK-expressing tumors.

Publication Title

Nuclear FAK controls chemokine transcription, Tregs, and evasion of anti-tumor immunity.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE35003
Gene expression in control and cilia deleted growth plate chondrocytes
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Proliferative zone chondrocytes were microdissected from control and Ift88-deleted growth plates to determine gene expression profiles regulated by primary cilia.

Publication Title

Ift88 regulates Hedgehog signaling, Sfrp5 expression, and β-catenin activity in post-natal growth plate.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE38829
Expression data from MCF7 and MCF7-LTED cells treated with YC-1
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

To identify novel therapeutic opportunities for patients with acquired resistance to endocrine treatments in breast cancer, we applied a high-throughput drug screen. The IC50 values were determined for MCF7 and MCF7-LTED cells.

Publication Title

VAV3 mediates resistance to breast cancer endocrine therapy.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE39694
Expression data from orthotopic tumors and the MCF7 and HCC1937 breast cancer cell lines
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Stem cell-like transcriptional reprogramming mediates metastatic resistance to mTOR inhibition.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE39691
Expression data from a triple-negative BRCA1-mutated ortho-xenograft treated with sirolimus
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

Inhibitors of the mechanistic target of rapamycin (mTOR) are currently used to treat advanced metastatic breast cancer. However, whether an aggressive phenotype is sustained through adaptation or resistance to mTOR inhibition remains unknown. Here, complementary studies in human tumors, cancer models and cell lines reveal transcriptional reprogramming that supports metastasis in response to mTOR inhibition. This cancer feature is driven by EVI1 and SOX9. EVI1 functionally cooperates with and positively regulates SOX9, and promotes the transcriptional upregulation of key mTOR pathway components (REHB and RAPTOR) and of lung metastasis mediators (FSCN1 and SPARC). The expression of EVI1 and SOX9 is associated with stem cell-like and metastasis signatures, and their depletion impairs the metastatic potential of breast cancer cells. These results establish the mechanistic link between resistance to mTOR inhibition and cancer metastatic potential, thus enhancing our understanding of mTOR targeting failure.

Publication Title

Stem cell-like transcriptional reprogramming mediates metastatic resistance to mTOR inhibition.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact