refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 51 results
Sort by

Filters

Technology

Platform

accession-icon GSE49439
Differentiation of human amniotic fluid kidney progenitor cells into podocytes and comparison with human conditionally immortalized podocytes
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

In this work, we isolated and characterized a novel cell population derived from human amniotic fluid cells (hAKPC-P), and we differentiated them into podocytes.

Publication Title

A novel source of cultured podocytes.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP069880
Posttranscriptional control of the neutrophil transcriptome by tristetraprolin promotes neutrophil apoptosis and compromises host antimicrobial defense
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Posttranscriptional regulation of mRNA levels in neutrophils and its consequences for immune responses are unexplored. By employing profiling of the neutrophil transcriptome we show that the mRNA-destabilizing protein tristetraprolin (TTP) limits the expression of hundreds of genes, including genes negatively regulating apoptosis. Elicited TTP-deficient neutrophils exhibited reduced apoptosis and were increased in numbers. The anti-apoptotic protein Mcl-1 was elevated in TTP-deficient neutrophils and Mcl1 mRNA was bound and destabilized by TTP. Ablation of TTP in macrophages and neutrophils resulted in an improved defense and survival of mice during invasive infection with Streptococcus pyogenes. Mice lacking myeloid TTP prevented dissemination of bacteria and efficiently blunted systemic disease by massive but controlled neutrophil deployment. These data identify posttranscriptional control by TTP to restrict neutrophils and antimicrobial defense. Overall design: WT and TTPKO peritoneal neutrophils stimulated with LPS for 4 h. Each condition analyzed in three replicates

Publication Title

The RNA-binding protein tristetraprolin schedules apoptosis of pathogen-engaged neutrophils during bacterial infection.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP070703
Pervasive TTP binding but selective target mRNA destabilization in the macrophage transcriptome [RNA-Seq_2]
  • organism-icon Mus musculus
  • sample-icon 42 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Precise control of mRNA decay is fundamental for robust yet not exaggerated inflammatory responses to pathogens. Parameters determining the specificity and extent of mRNA degradation within the entire inflammation-associated transcriptome remain incompletely understood. Using transcriptome-wide high resolution occupancy assessment of the mRNA-destabilizing protein TTP, a major inflammation-limiting factor, we qualitatively and quantitatively characterize TTP binding positions and functionally relate them to TTP-dependent mRNA decay in immunostimulated macrophages. We identify pervasive TTP binding with incompletely penetrant linkage to mRNA destabilization. A necessary but not sufficient feature of TTP-mediated mRNA destabilization is binding to 3’ untranslated regions (UTRs). Mapping of binding positions of the mRNA-stabilizing protein HuR in activated macrophages revealed that TTP and HuR binding sites in 3’ UTRs occur mostly in different transcripts implicating only a limited co-regulation of inflammatory mRNAs by these proteins. Remarkably, we identify robust and widespread TTP binding to introns of stable transcripts. Nuclear TTP is associated with spliced-out introns and maintained in the nucleus throughout the inflammatory response. Our study establishes a functional annotation of binding positions dictating TTP-dependent mRNA decay in immunostimulated macrophages. The findings allow navigating the transcriptome-wide landscape of RNA elements controlling inflammation. Overall design: Experiment comparing RNA decay rates in WT and TTP-/- macrophages at LPS 3 h and 6 h. Transcription was blocked with actinomycin D for 0, 45 or 90 min. Decay rates was calculated using linear model.

Publication Title

Tristetraprolin binding site atlas in the macrophage transcriptome reveals a switch for inflammation resolution.

Sample Metadata Fields

Specimen part, Cell line, Subject, Time

View Samples
accession-icon SRP050048
Pervasive TTP binding but selective target mRNA destabilization in the macrophage transcriptome [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Precise control of mRNA decay is fundamental for robust yet not exaggerated inflammatory responses to pathogens. Parameters determining the specificity and extent of mRNA degradation within the entire inflammation-associated transcriptome remain incompletely understood. Using transcriptome-wide high resolution occupancy assessment of the mRNA-destabilizing protein TTP, a major inflammation-limiting factor, we qualitatively and quantitatively characterize TTP binding positions and functionally relate them to TTP-dependent mRNA decay in immunostimulated macrophages. We identify pervasive TTP binding with incompletely penetrant linkage to mRNA destabilization. A necessary but not sufficient feature of TTP-mediated mRNA destabilization is binding to 3’ untranslated regions (UTRs). Mapping of binding positions of the mRNA-stabilizing protein HuR in activated macrophages revealed that TTP and HuR binding sites in 3’ UTRs occur mostly in different transcripts implicating only a limited co-regulation of inflammatory mRNAs by these proteins. Remarkably, we identify robust and widespread TTP binding to introns of stable transcripts. Nuclear TTP is associated with spliced-out introns and maintained in the nucleus throughout the inflammatory response. Our study establishes a functional annotation of binding positions dictating TTP-dependent mRNA decay in immunostimulated macrophages. The findings allow navigating the transcriptome-wide landscape of RNA elements controlling inflammation. Overall design: RNA-Seq of RNA isolated from murine bone marrow derived macrophages (WT or TTP-deficient) stimulated for 6 h with LPS

Publication Title

Tristetraprolin binding site atlas in the macrophage transcriptome reveals a switch for inflammation resolution.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE28880
TTP-dependent mRNA decay in LPS-stimulated macrophages
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Controlled decay of cytokine and chemokine mRNAs restrains the time and amplitude of inflammatory responses. Tristetraprolin (TTP) binds to AU-rich elements in 3 untranslated regions of mRNA and targets the bound mRNA for degradation. We have addressed here the function of TTP in balancing the macrophage activation state by a comprehensive analysis of TTP-dependent mRNA decay in LPS-stimulated macrophages from WT and TTP-deficient mice.

Publication Title

Tristetraprolin-driven regulatory circuit controls quality and timing of mRNA decay in inflammation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE113624
Gene expression profiles of tumor-induced pTregs and anergic tumor-specific CD4+ T cells
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

Up to now the role of tumor-specific pTregs and anergic cells during tumor development is not fully understood. Here we used a genetically-induced tumor expressing a MHC-II restricted DBY model antigen to characterize the tumor-induced pTregs and anergic cells that arise early during tumor development.

Publication Title

Induction of anergic or regulatory tumor-specific CD4<sup>+</sup> T cells in the tumor-draining lymph node.

Sample Metadata Fields

Time

View Samples
accession-icon GSE113623
Gene expression profile of tumor antigen-specific CD4 T cells
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

Up to know CD4 T cell antitumor responses have been mostly studied in transplanted tumor models. However, although they are valuable tools, they are not suitable to study the long term interactions between tumors and the immune system

Publication Title

Induction of anergic or regulatory tumor-specific CD4<sup>+</sup> T cells in the tumor-draining lymph node.

Sample Metadata Fields

Time

View Samples
accession-icon GSE113625
Gene expression profile of chronically activated CD4+ T cells from cancer patients
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

CD4+ T cells as mediators of antitumor responses are beginning to be appreciated. Our team demonstrated that chronically activated CD4+ T cells (chCD4+ T cells) were expanded in the blood of cancer patients and their expansion is correlated with tumor regression.

Publication Title

Induction of anergic or regulatory tumor-specific CD4<sup>+</sup> T cells in the tumor-draining lymph node.

Sample Metadata Fields

Disease

View Samples
accession-icon GSE72949
Identification of HS memory-associated genes
  • organism-icon Arabidopsis thaliana
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

To identify genes associated with the heat stress (HS) memory, transcript profiling using Affymetrix ATH1 microarrays was performed to compare Col-0 seedlings after the priming stimulus with control plants (unprimed).

Publication Title

The plastid metalloprotease FtsH6 and small heat shock protein HSP21 jointly regulate thermomemory in Arabidopsis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP071226
RNAseq of xylem tissue of transgenic and wildtype Populus trichocarpa (NSF Plant Genome Research Program Project 0922391)
  • organism-icon Populus trichocarpa
  • sample-icon 347 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx, Illumina HiSeq 2000

Description

We transformed Populus trichocarpa and generated transgenics with knockdown or overexpression of monolignol genes and transcription factors Overall design: RNAseq of xylem tissue of transgenic and wildtype Populus trichocarpa. 378 samples.

Publication Title

Modeling cross-regulatory influences on monolignol transcripts and proteins under single and combinatorial gene knockdowns in Populus trichocarpa.

Sample Metadata Fields

Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact