refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 3078 results
Sort by

Filters

Technology

Platform

accession-icon SRP114983
Granzyme A in Human Platelets Regulates Pro-Inflammatory Gene Synthesis by Monocytes in Aging
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Dysregulated inflammation is implicated in the pathobiology of aging, yet platelet-leukocyte interactions and downstream inflammatory gene synthesis in older adults remains poorly understood. Highly-purified human platelets and monocytes were isolated from healthy younger (age<45, n=37) and older (age60, n=30) adults and incubated together under autologous and non-autologous conditions. Inflammatory gene synthesis by monocytes, basally and in the presence of platelets, was examined. Next-generation RNA-sequencing allowed for unbiased profiling of the platelet transcriptome in aging. Basal IL-8 and MCP-1 synthesis by monocytes alone did not differ between older and younger adults. However, in the presence of autologous platelets, monocytes from older adults synthesized greater IL-8 (415 vs. 92 ng/mL, p<0.0001) and MCP-1 (867150 vs. 21636 ng/mL, p<0.0001) than younger adults. Non-autologous experiments demonstrated that platelets from older adults were sufficient for upregulating inflammatory gene synthesis by monocytes. Using RNA-seq followed by validation via RT-PCR and immunoblot, we discovered that granzyme A (GrmA), a serine protease not previously identified in human platelets, is increased in aging (~9-fold vs. younger adults, p<0.05) and governs increased IL-8 and MCP-1 synthesis through TLR4 and caspase-1. Inhibiting GrmA reduced the excessive IL-8 and MCP-1 synthesis in older adults to levels similar to younger adults. In summary, human aging is associated with changes in the platelet transcriptome and proteome. GrmA is present and bioactive in human platelets, is higher in older adults, and controls inflammatory gene synthesis by monocytes. Alterations in the platelet molecular signature and downstream signaling to monocytes may contribute to dysregulated inflammatory syndromes and adverse outcomes in older adults.

Publication Title

Granzyme A in Human Platelets Regulates the Synthesis of Proinflammatory Cytokines by Monocytes in Aging.

Sample Metadata Fields

Sex, Age, Specimen part, Disease

View Samples
accession-icon GSE36079
Transcription profile of the bovine pretransfer endometrium based on pregnancy success after in vitro produced embryos transfer
  • organism-icon Bos taurus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Bovine Genome Array (bovine)

Description

In summary the main goal of this study is to determine the transcriptional profile of bovine endoemtrium at early stage of development in relation to pregnancy success after transfer of in vitro derived blastocysts

Publication Title

Gene expression and DNA-methylation of bovine pretransfer endometrium depending on its receptivity after in vitro-produced embryo transfer.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE36080
Transcription profile of the bovine pretransfer endometrium based on pregnancy success after in vivo produced embryos transfer
  • organism-icon Bos taurus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Bovine Genome Array (bovine)

Description

In summary the main goal of this study is to determine the transcriptional profile of bovine endoemtrium at early stage of development in relation to pregnancy success after transfer of in vivo derived blastocysts

Publication Title

Gene expression and DNA-methylation of bovine pretransfer endometrium depending on its receptivity after in vitro-produced embryo transfer.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE23751
In Vitro Transcriptome Analysis of Porcine Plexus Epithelial Cells in Response to Streptococcus suis: Functions of the Choroid Plexus in Antimicrobial Defense
  • organism-icon Sus scrofa
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

We used microarrays to detail the global gene expression changes following apical infection of porcine choroid plexus epithelial cells (PCPEC) with Streptococcus suis (S. suis)

Publication Title

In vitro transcriptome analysis of porcine choroid plexus epithelial cells in response to Streptococcus suis: release of pro-inflammatory cytokines and chemokines.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE94363
Posttranslationally modified progesterone receptors direct ligand-specific expression of breast cancer stem cell-associated gene programs
  • organism-icon Homo sapiens
  • sample-icon 84 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Background

Publication Title

Posttranslationally modified progesterone receptors direct ligand-specific expression of breast cancer stem cell-associated gene programs.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE3865
CSN4-1 mutant analysis
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Transcript profiling analysis of csn4-1 light grown mutant seedlings compared to wild type using Arabidopsis ATH1 GeneChip array

Publication Title

Characterization of the VIER F-BOX PROTEINE genes from Arabidopsis reveals their importance for plant growth and development.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11193
Gene expression data from Muscle Longissimus dorsi sample of F2 animals, T-test paired and SAM
  • organism-icon Sus scrofa
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

To identify biological processes as well as molecular markers for drip loss, the transcriptomes of logissimus dorsi from 6 sib pair of F2 animals

Publication Title

Expression profiling of muscle reveals transcripts differentially expressed in muscle that affect water-holding capacity of pork.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE32112
Gene expression data from muscle sample of pig commercial herd Pix(DLxDE).
  • organism-icon Sus scrofa
  • sample-icon 206 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

In this study, we used correlation analysis of the expression profiles and carcass traits to produce a list of functional candidate genes under the assumption that genes with strong correlation between their expression values and drip belong to pathways or networks relevant for the control of the trait.

Publication Title

Elucidating molecular networks that either affect or respond to plasma cortisol concentration in target tissues of liver and muscle.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE10204
Gene expression data from Muscle Longissimus dorsi sample of F2 animals
  • organism-icon Sus scrofa
  • sample-icon 72 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

In this study, we used correlation analysis of the expression profiles and drip loss to produce a list of functional candidate genes under the assumption that genes with strong correlation between their expression values and drip belong to pathways or networks relevant for the control of the trait.

Publication Title

Trait correlated expression combined with expression QTL analysis reveals biological pathways and candidate genes affecting water holding capacity of muscle.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE63693
Prostate Cancer Risk SNPs enriched in Androgen Receptor Binding Sites
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Genome-wide association studies (GWAS) have identified dozens of genomic loci, whose single nucleotide polymorphisms (SNPs) predispose to prostate cancer (PCa). However, the biological functions of these common genetic variants and the mechanisms to increase disease risk are largely unknown. We integrated chromatin-IP coupled sequencing (ChIP-seq) and microarray expression profiling in the TMPRSS2-ERG gene rearrangement positive DuCaP cell model with the NHGRI GWAS PCa risk SNPs catalog, in an attempt to identify disease susceptibility SNPs localized within functional androgen receptor binding sites (ARBSs). Among the 48 GWAS index SNPs and 2,702 linked SNPs defined by the 1000G project 104 were found to be localized in the AR ChIP-seq peaks. Of these risk SNPs, rs11891426 T/G in the 7th intron of its host gene melanophilin (MLPH) was found located within a putative auxiliary ARE motif, which we found enriched in the neighborhood of canonical ARE motifs. Exchange of T to G attenuated the transcriptional activity of the MLPH-ARBS in a reporter gene assay. The expression of MLPH protein in tissue samples from prostate cancer patients was significantly lower in those with the G compared to the T allele. Moreover, a significant positive correlation of AR and MLPH protein expression levels was also confirmed in tissue samples. These results unravel a hidden link between AR and a functional PCa risk SNP rs11891426, whose allele alteration affects androgen regulation of its host gene MLPH. This study shows the power of integrative studies to pin down functional risk SNPs and justifies further investigations.

Publication Title

Putative Prostate Cancer Risk SNP in an Androgen Receptor-Binding Site of the Melanophilin Gene Illustrates Enrichment of Risk SNPs in Androgen Receptor Target Sites.

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact