refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 3078 results
Sort by

Filters

Technology

Platform

accession-icon SRP058191
RC3H1 posttranscriptionally regulates A20 mRNA and modulates the activity of the IKK/NF-kB pathway [RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

The RNA-binding protein RC3H1 (also known as ROQUIN) promotes TNFalpha mRNA decay via a 3''UTR constitutive decay element (CDE). Here, we applied PAR-CLIP to human RC3H1 to identify about 3800 mRNA targets with more than 16000 binding sites. A large number of sites are distinct from the consensus CDE and revealed a structure-sequence motif with U-rich sequences embedded in hairpins. RC3H1 binds preferentially short-lived and DNA damage induced mRNAs, indicating a role of this RNA-binding protein in the posttranscriptional regulation of the DNA damage response. Intriguingly, RC3H1 affects expression of NF-kB pathway regulators such as IkBalpha and A20. RC3H1 uses roquin and Zn-finger domains to contact a binding site in the A20 3''UTR, demonstrating a not yet recognized mode of RC3H1 binding. Knockdown of RC3H1 resulted in increased A20 protein expression, thereby interfering with IkB kinase and NF-kB activities, demonstrating that RC3H1 can modulate the activity of the IKK/NF-kB pathway. Overall design: We measured global mRNA decay rates in mock and RC3H1/RC3H2-depleted HEK293 cells. Transcription was blocked by Actinomycin D zero, one or two hours before harvesting. Total RNA was isolated in two biological replicates and subjected to polyA selection followed by high-throughput sequencing.

Publication Title

RC3H1 post-transcriptionally regulates A20 mRNA and modulates the activity of the IKK/NF-κB pathway.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE31099
Expression data from treatment-induced senescence in mouse Emu-myc B-cell lymphoma model
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Treatment induced senescence (TIS) is a terminal cell cycle arrest program, increasingly recognized as a tumor suppressor mechanism complementing apoptosis in response to standard chemotherapy regimens. In particular cells with blocked apoptotic pathways rely on senescence as the only remaining failsafe mechanism to keep the neoplastic growth in check. However, little is known about biological properties, long-term fate of senescent tumor cells and their impact on the microenvironment.

Publication Title

Opposing roles of NF-κB in anti-cancer treatment outcome unveiled by cross-species investigations.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE62510
Expression data from two sorted lymphatic endothelial cell (LEC) populations, podoplanin-high versus podoplanin low
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Extracorporeal shockwave treatment was shown to improve orthopaedic diseases, wound healing and to stimulate lymphangiogenesis in vivo. The aim of this study was to investigate in vitro shockwave treatment (IVSWT) effects on lymphatic endothelial cell (LEC) behavior and lymphangiogenesis. We analyzed migration, proliferation, vascular tube forming capability and marker expression changes of LECs after IVSWT compared with HUVECs. Finally, transcriptome- and miRNA analyses were conducted to gain deeper insight into the IVSWT-induced molecular mechanisms in LECs. The results indicate that IVSWT-mediated proliferation changes of LECs are highly energy flux density-dependent and LEC 2D as well as 3D migration was enhanced through IVSWT. IVSWT suppressed HUVEC 3D migration but enhanced vasculogenesis. Furthermore, we identified podoplaninhigh and podoplaninlow cell subpopulations, whose ratios changed upon IVSWT treatment. Transcriptome- and miRNA analyses on these populations showed differences in genes specific for signaling and vascular tissue. Our findings help to understand the cellular and molecular mechanisms underlying shockwave-induced lymphangiogenesis in vivo.

Publication Title

Molecular and cellular effects of in vitro shockwave treatment on lymphatic endothelial cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE2401
Gene expression in Hypotension
  • organism-icon Rattus norvegicus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Expression 230A Array (rae230a)

Description

Rat kidney in normo- and hypotensive animals.

Publication Title

A physiogenomic approach to study the regulation of blood pressure.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE64232
Gene expression profiles of canonical and non-canonical NF-B signaling pathways in Hodgkins lymphoma
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Malignant Hodgkin's lymphoma (HL) cells are characterized by constitutive activation of the canonical as well as the non-canonical NF-B signaling cascades. We depleted subunit combinations corresponding to either canonical (p50/RelA) or non-canonical (p52/RelB) dimers in the HL cell line L-1236 and performed Affymetrix microarray analysis. Knockdown of p52/RelB affected the expression of a significantly higher number of genes than the knockdown of p50/RelA. The two sets of target genes presented a partial overlap, however they also revealed specific genes that are involved in distinct aspects of tumor biology.

Publication Title

A roadmap of constitutive NF-κB activity in Hodgkin lymphoma: Dominant roles of p50 and p52 revealed by genome-wide analyses.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE64234
Gene expression profile of the NF-B subunit p52 in Hodgkins lymphoma
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Malignant cells of Hodgkin's lymphoma (HL) cells are characterized by constitutive activation of the canonical as well as the non-canonical NF-B signaling cascades. Knockdown of a subunit combination corresponding to the non-canonical NF-B dimer (p52/RelB) in the HL cell line L-1236 caused up-regulation of a set of genes that are associated with hematopoietic and lymphoid organ development. As p52 can form homodimeric complexes, which can repress transcription either alone or in association with transcriptional repressors such as HDAC1, we knocked down p52 alone to analyze its role in gene repression in HL cells. We found that the single knockdown of p52 is indeed sufficient to up-regulate an interesting set of genes that may play a role in B-cell and/or HL development.

Publication Title

A roadmap of constitutive NF-κB activity in Hodgkin lymphoma: Dominant roles of p50 and p52 revealed by genome-wide analyses.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE18666
Persistent heat stress in Arabidopsis
  • organism-icon Arabidopsis thaliana
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Analysis of transcriptional changes upon persistent heat stress with emphasis on epigenetically regulated genes

Publication Title

Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP014006
RNA sequencing in fly heads to examine the effect of spermidine feeding on transcription in the ageing fly brain.
  • organism-icon Drosophila melanogaster
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx, Illumina HiSeq 2000

Description

mRNA sequencing was used to identify genome wide transcriptional changes occuring in fly heads in response to spermidine feeding. This study shed light on the molecular mechanisms through wich spermidine can protect against age-dependent memory impairment. Overall design: mRNA profiles from 3 and 10 day old Drosophila melanogaster heads were generated in duplicate by deep sequencing using Illumina GAIIx. mRNA profiles from flies that were fed food with 5mM spermidine were compared to profiles from flies that had no spermidine in thier food.

Publication Title

Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner.

Sample Metadata Fields

Age, Specimen part, Subject

View Samples
accession-icon GSE108089
Comprehensive molecular profiling of children with recurrent cancer
  • organism-icon Homo sapiens
  • sample-icon 42 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Importance of Comprehensive Molecular Profiling for Clinical Outcome in Children With Recurrent Cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE108088
Comprehensive molecular profiling of children with recurrent cancer II
  • organism-icon Homo sapiens
  • sample-icon 42 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

to explore possible treatment targets and reasons for agressive children cacners by comprehensive molecular profiling on several platforms

Publication Title

Importance of Comprehensive Molecular Profiling for Clinical Outcome in Children With Recurrent Cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact