refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1117 results
Sort by

Filters

Technology

Platform

accession-icon GSE100842
In vivo reprogramming drives Kras-induced cancer development
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

In vivo reprogramming drives Kras-induced cancer development.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE100840
In vivo reprogramming drives Kras-induced cancer development [expression]
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Accumulation of genetic mutations is thought to be a primary cause of cancer. However, a set of genetic mutations sufficient for cancer development remains unclear in most cancers, including pancreatic cancer. Here, we examined the effect of in vivo reprogramming on Kras-induced cancer development. We first demonstrate that Kras and p53 mutations are insufficient to induce activation of ERK signaling and cancer development in the pancreas. We next show that short transient expression of reprogramming factors (1-3 days) in pancreatic acinar cells results in repression of acinar cell enhancers and reversible loss of acinar cell properties. Notably, the transient expression of reprogramming factors in Kras mutant mice is sufficient to induce robust and persistent activation of ERK signaling in acinar cells and rapid formation of pancreatic ductal adenocarcinoma (PDAC). In contrast, forced expression of acinar cell-related transcription factors inhibits pancreatitis-induced activation of ERK signaling and development of precancerous lesions in Kras-mutated acinar cells.

Publication Title

In vivo reprogramming drives Kras-induced cancer development.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE9717
Rb Intrinsically Promotes Erythropoiesis by Coupling Cell Cycle Exit with Mitochondrial Biogenesis
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Regulation of the cell cycle is intimately linked to erythroid differentiation, yet how these processes are coupled is not well understood. To gain insight into this coordinate regulation, we examined the role that the retinoblastoma protein (Rb), a central regulator of the cell cycle, plays in erythropoiesis. We found that Rb serves a cell-intrinsic role and its absence causes ineffective erythropoiesis, with a differentiation block at the transition from early to late erythroblasts. Unexpectedly, in addition to a failure to properly exit the cell cycle, mitochondrial biogenesis fails to be upregulated concomitantly, contributing to this differentiation block. The link between erythropoiesis and mitochondrial function was validated by inhibition of mitochondrial biogenesis. Erythropoiesis in the absence of Rb resembles the human myelodysplastic syndromes, where defects in cell cycle regulation and mitochondrial function frequently occur. Our work demonstrates how these seemingly disparate pathways play a role in coordinately regulating cellular differentiation.

Publication Title

Rb intrinsically promotes erythropoiesis by coupling cell cycle exit with mitochondrial biogenesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10567
Rhesus macaque ileal loop study
  • organism-icon Macaca mulatta
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Rhesus Macaque Genome Array (rhesus)

Description

Salmonella enterica serotype Typhimurium cause a localized enteric infection in immunocompetent patients while human immunodeficiency virus (HIV)-infected patients develop a life threatening bacteremia. We used a rhesus macaque ileal loop model to study how simian immunodeficiency virus (SIV) infection triggers defects in mucosal barrier function that enhance S. Typhimurium dissemination. SIV infection resulted in significant depletion of CD4+ T cells in the intestinal mucosa. Gene expression profiling revealed a defective TH17 response (with suppression of IL-17 and IL-22 expression) and impaired homeostasis of the intestinal epithelium in SIV-infected animals during NTS infection. These findings correlated with an impaired ability of lamina propria CD4+ T cells from SIV-infected macaques to produce IL-17 upon ex vivo stimulation, while production of IFN-gamma was not affected. This cytokine imbalance in SIV-infected animals was associated with reduced expression of genes required for intestinal epithelial maintenance and repair, increased fluid secretion during NTS infection, epithelial damage and translocation of a non-invasive S. Typhimurium mutant. Although no defects in neutrophil recruitment were noted, the ileum of SIV-infected animals contained lower levels of the enzyme myeloperoxidase, which may indicate defects in neutrophil killing capacity. S. Typhimurium was recovered in markedly increased numbers from the mesenteric lymph nodes of SIV-infected macaques, illustrating the increased potential for systemic dissemination during co-infection. Our data suggest that SIV-infection causes a multi-factorial defect in mucosal barrier function that promotes bacterial dissemination.

Publication Title

Simian immunodeficiency virus-induced mucosal interleukin-17 deficiency promotes Salmonella dissemination from the gut.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE30539
Dissecting the retinoid-induced differentiation of F9 embryonal stem cells by integrative genomics
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Dissecting the retinoid-induced differentiation of F9 embryonal stem cells by integrative genomics.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon GSE30537
Dissecting the retinoid-induced differentiation of F9 embryonal stem cells by integrative genomics [mRNA profiling]
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Retinoic acid (RA) triggers physiological processes by activating heterodimeric transcription factors comprising retinoic acid (RARa,b,g) and retinoid X (RXRa,b,g) receptors. How a single signal induces highly complex temporally controlled networks that ultimately orchestrate physiological processes is unclear. Using an RA-inducible differentiation model we defined the temporal changes in the genome-wide binding patterns of RARg and RXRa and correlated them with transcription regulation. Unexpectedly, both receptors displayed a highly dynamic binding, with different RXRa heterodimers targeting identical loci. Comparison of RARg and RXRa co-binding at RA-regulated genes identified putative RXRa-RARg target genes that were validated with subtype-selective agonists. Gene regulatory decisions during differentiation were inferred from transcription factor target gene information and temporal gene expression. This analysis revealed 6 distinct co-expression paths of which RXRa-RARg is associated with transcription activation, while Sox2 and Egr1 were predicted to regulate repression. Finally, RXRa-RARg regulatory networks were reconstructed through integration of functional co-citations. Our analysis provides a dynamic view of RA signalling during cell differentiation, reveals RA heterodimer dynamics and promiscuity, and predicts decisions that diversify the RA signal into distinct gene-regulatory programs.

Publication Title

Dissecting the retinoid-induced differentiation of F9 embryonal stem cells by integrative genomics.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon GSE139271
Host-microbe interactions following L. plantarum administration in SIV-infected and uninfected rhesus macaques
  • organism-icon Macaca mulatta
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rhesus Macaque Genome Array (rhesus)

Description

We used microarrays to detail the global gene expression changes in the ileum of SIV-infected and uninfected macaques following administration of L. plantarum.

Publication Title

PPARα-targeted mitochondrial bioenergetics mediate repair of intestinal barriers at the host-microbe intersection during SIV infection.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE69306
Significant obesity associated gene expression changes are in the stomach but not intestines in obese mice
  • organism-icon Mus musculus
  • sample-icon 129 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The gastrointestinal (GI) tract can have significant impact on the regulation of the whole body metabolism and may contribute to the development of obesity and diabetes. To systemically elucidate the role of the GI tract in obesity, we performed a transcriptomic analyses in different parts of the GI tract of two obese mouse models: ob/ob and high-fat diet (HFD) fed mice. Compared to their lean controls, both obese mouse groups had significant amount of gene expression changes in the stomach (ob/ob: 959; HFD: 542), much more than the number of changes in the intestine. Despite the difference in genetic background, the two mouse models shared 296 similar gene expression changes in the stomach. Among those genes, some had known associations to obesity, diabetes and insulin resistance. In addition, the gene expression profile strongly suggested an increased gastric acid secretion in both obese mouse models, probably through an activation of the gastrin pathway. In conclusion, our data reveal a previously unknown dominant connection between the stomach and obesity.

Publication Title

Significant obesity-associated gene expression changes occur in the stomach but not intestines in obese mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE23600
Expression data from sorted Treg cells from WT or motheaten mice
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The importance of regulatory T cells (Treg) for immune tolerance is well recognized, yet the signaling molecules influencing their suppressive activity are relatively poorly understood. We identified the cytoplasmic tyrosine phosphatase SHP-1 as a novel endogenous brake and modifier of the suppressive ability of Treg cells; consistent with this notion, loss of SHP-1 expression strongly augments the ability of Treg cells to suppress inflammation in a mouse model. Specific harmacological inhibition of SHP-1 enzymatic activity via the cancer drug sodium stibogluconate (SSG) potently augmented Treg cell suppressor activity both in vivo and ex vivo.

Publication Title

The protein tyrosine phosphatase SHP-1 modulates the suppressive activity of regulatory T cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE70262
The impact of P53 loss on transcriptome changes following loss of Apc in the intestine
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

BACKGROUND: p53 is an important tumor suppressor with a known role in the later stages of colorectal cancer, but its relevance to the early stages of neoplastic initiation remains somewhat unclear. Although p53-dependent regulation of Wnt signalling activity is known to occur, the importance of these regulatory mechanisms during the early stages of intestinal neoplasia has not been demonstrated.

Publication Title

A limited role for p53 in modulating the immediate phenotype of Apc loss in the intestine.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact