refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 146 results
Sort by

Filters

Technology

Platform

accession-icon GSE34765
Transcriptomic analysis of the cerebellum of daDREAM mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

DREAM (downstream regulatory element antagonist modulator) is a Ca2+-binding protein that binds DNA and represses transcription in a Ca2+-dependent manner. Previous studies have shown a role for DREAM in cerebellar function regulating the expression of the sodium/calcium exchanger3 (NCX3) in cerebellar granules to control Ca2+ homeostasis and survival of these neurons. To achieve a more global view of the genes regulated by DREAM in the cerebellum, we performed a genome-wide analysis in transgenic cerebellum expressing a Ca2+-insensitive/CREB-independent dominant active mutant DREAM (daDREAM). Our results indicate that DREAM is a major transcription factor in the cerebellum that regulates genes important for cerebellar development.

Publication Title

Reduced Mid1 Expression and Delayed Neuromotor Development in daDREAM Transgenic Mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE17844
Basal expression in daDREAM transgenic mouse hippocampus
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Changes in nuclear Ca2+ homeostasis activate specific gene expression programs and are central to the acquisition and the plastic storage of memories. DREAM /KChIP proteins form heterotetramers that bind DNA and repress transcription in a Ca2+-dependent manner. Single ablation of one member of the DREAM/KChIP family may result in a mild or the absence of phenotype due to partial gene compensation. To study the function of DREAM/KChIP proteins in the brain, we used transgenic mice expressing a Ca2+-insensitive/CREB-independent dominant active mutant DREAM (daDREAM). We show that daDREAM controls the expression of several activity-dependent transcription factors including Npas4, Nr4a1, Mef2C, JunB and c-Fos, as well as the chromatin modifying enzyme Mbd4 and proteins related to actin polymerization like Arc and gelsolin. Thus, directly or through these targets, expression of daDREAM in the forebrain resulted in a complex phenotype characterized by i) impaired learning and memory, ii) loss of recurrent inhibition and enhanced LTP in the dentate gyrus without affecting Kv4-mediated potassium currents, and iii) modified spine density in DG granule neurons. Our results propose DREAM as a master-switch transcription factor regulating several activity-dependent gene expression programs to control synaptic plasticity, learning and memory.

Publication Title

DREAM controls the on/off switch of specific activity-dependent transcription pathways.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE86036
Expression data from LIF treated chordoma cell lines U-CH1 and MUG-Chor1
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

Leukemia Inhibitory Factor is an important cytokine of the IL family. Recent findings suggest it has a crucial role in cancer progression

Publication Title

Leukemia Inhibitory Factor Promotes Aggressiveness of Chordoma.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE52032
14-3-3 overexpression-induced gene signature in MCF-10A cells
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To study the function of 14-3-3, we established MCF-10A human mammary epithelial cells transduced with 14-3-3 (10A.) and vector (10A.Vec)

Publication Title

14-3-3ζ turns TGF-β's function from tumor suppressor to metastasis promoter in breast cancer by contextual changes of Smad partners from p53 to Gli2.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE64321
Differential expression of Rice genes upon Rhodotorula treatment
  • organism-icon Oryza sativa
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rice (Chinese Build) Gene 1.0 ST Array (rcngene10st)

Description

The experiments were performed to understand the molecular basis of plant growth promotion in rice by Rhodotorula mucilaginosa JGTA-S1, an endophytic yeast from Typha angustifolia

Publication Title

Early changes in shoot transcriptome of rice in response to Rhodotorula mucilaginosa JGTA-S1.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE66925
A Comparative Study of Global Transcriptomic Responses under Excess or deficient Phosphate (Pi) Regime reveals ethylene mediated signaling in Arabidopsis.
  • organism-icon Arabidopsis thaliana
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Arabidopsis Gene 1.0 ST Array (aragene10st)

Description

Phosphorus is an essential macronutrient element, but some time causes problems if present in excess. Unlike the enormous molecular and morphophysiological information available in plants regarding phosphate (Pi) deficiency, little is known about the effect of excess Pi on plants, which is indeed essential for its remediation. Here, we have carried out a comparative study of plant molecular responses under excess Pi (20 mM) or without Pi (0 mM) at transcriptome level. The 1.25 mM treatment concentration of Pi used as a control to obtain differentially regulated genes under above mentioned Pi regimes. A novel whole-transcript expression array, i.e. Arabidopsis Gene 1.0 ST Array, was used to perform these experiments. The most distinctly regulated groups of genes represent modulation in ethylene mediated signaling, Fe deficiency response, and root development. We have also identified some defensin like genes, possessing a gibberellic acid regulated domain (GASA like) under excess Pi treatment. Overall, this study will not only help in dissecting the mechanism of plant responses under excess Pi but also provide the clues about the unknown genes involved in phosphorus homeostasis.

Publication Title

Comprehensive study of excess phosphate response reveals ethylene mediated signaling that negatively regulates plant growth and development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE55436
Genome-wide transcriptome analysis reveals ABA mediated response in Arabidopsis during gold (Aucl4-) treatment
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Arabidopsis Gene 1.0 ST Array (aragene10st)

Description

Genome-wide transcriptome analysis was carried out in root tissue of Arabidopsis seedlings treated with gold (Au) as Chloroauric acid (HAuCl4). This study demonstrated remarkable changes in root transcriptome within the 12 h exposure. Most of the genes differentially expressed were related to glutathione binding, methylations, secondary metabolism, sugar metabolism, ABA, ethylene, auxin related signalling, transport and signal-transduction pathways.

Publication Title

Genome wide transcriptome analysis reveals ABA mediated response in Arabidopsis during gold (AuCl(-) 4) treatment.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP062569
Transcriptome analysis upon overexpression of SIN3 187HA in Drosophila cultured cells
  • organism-icon Drosophila melanogaster
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

SIN3 is a master transcriptional scaffold protein. SIN3 interacts with RPD3 and other accessory proteins to form a histone modifying complex. A single Sin3A gene encodes multiple isoforms of SIN3, of which SIN3 187 and SIN3 220 are the predominant isoforms. Previous studies demonstrated that SIN3 isoforms play non-redundant roles during fly development. In the current study, we sought to investigate the genes regulated by SIN3 187. Overall design: S2 cells and cells carrying a stable transgene of SIN3 187HA (SIN3 187HA cells) were treated with 0.07 µM CuSO4. CuSO4 treatment led to ectopic expression of SIN3 187HA. S2 cells were used as a control. Following induction, total mRNA was extracted. mRNA profiling of these samples were performed by deep sequencing using Illumina Hiseq2500. Three biological replicates were performed.

Publication Title

Genome-wide studies reveal novel and distinct biological pathways regulated by SIN3 isoforms.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE86547
The histone demethylase KDM3A regulates the transcriptional program of the androgen receptor in prostate cancer cells
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

To identify the genes regulated by androgen receptor (AR), we performed the profiling array analysis on the CWR22Rv1 cells and determined the differentially expressed genes upon the knockdown of AR.

Publication Title

The histone demethylase KDM3A regulates the transcriptional program of the androgen receptor in prostate cancer cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE53152
Gene expression analysis in wild-type and OsGSTU4 overexpression line
  • organism-icon Arabidopsis thaliana
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Glutathione S-transferases (GSTs) are the ubiquitous enzymes, which play important role in defense against various stresses. To analyze the function of a rice GST gene, OsGSTU4, we overexpressed it into Arabidopsis constitutively. The physiological analyses revealed that overexpression of GRX gene enhanced abiotic stress tolerance in transgenic plants as compared to wild-type.

Publication Title

Over-expression of a rice tau class glutathione s-transferase gene improves tolerance to salinity and oxidative stresses in Arabidopsis.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact