refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 746 results
Sort by

Filters

Technology

Platform

accession-icon GSE67522
Genome-wide analysis of gene expression to identify the probably functionally relevant pathways in cervical cancer progression
  • organism-icon Homo sapiens
  • sample-icon 42 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Identification of genes and pathways relevant to Cervical cancer pathogenesis. The study also aimed at identifying probable mechanistic differences in the low and high HOTAIR expressing cervical cancers patients .

Publication Title

Bridging Links between Long Noncoding RNA HOTAIR and HPV Oncoprotein E7 in Cervical Cancer Pathogenesis.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE51130
Using a rhabdomyosarcoma patient-derived xenograft to examine precision medicine approaches and model acquired resistance
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Original patient tumor is directly implanted in mice xenografts. Tumor is propagated to multiple mice for conduct of 6 arm treatment trials and control. Therapies are selected based on T0 and F0 genomic profiles.

Publication Title

Using a rhabdomyosarcoma patient-derived xenograft to examine precision medicine approaches and model acquired resistance.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE39669
Prenatal PPARa-dependent gene expression in fetal mouse liver just before birth (E19.5)
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Inborn errors of lipid metabolism illustrate the importance of proper milk fat oxidation in newborn mammals. In the liver, a remarkable lipid catabolic competence is present at birth; however, it is unclear how this critical trait is acquired and regulated. In this work, we found that the genes required for milk lipid catabolism are already transcribed before birth in the term fetus (E19.5) and controlled by the peroxisome-proliferator activated receptor alpha (PPAR) in mouse liver. The developmental activity of PPAR strongly regulates fatty acid oxidation genes. Two days after birth (P2), during milk suckling, PPAR-null mice develop a congenital steatosis and milk protein oxidation is de-repressed to fuel an alternative energy pathway that maintains glucose homeostasis and postnatal growth. Our results demonstrate for the first time, the developmental role of PPAR in regulating the metabolic ability to use maternal milk as fuel in the early days of life.

Publication Title

Glucocorticoid receptor-PPARα axis in fetal mouse liver prepares neonates for milk lipid catabolism.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE39670
Postnatal PPARa-dependent gene expression in two-days old mouse liver
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Inborn errors of lipid metabolism illustrate the importance of proper milk fat oxidation in newborn mammals. In the liver, a remarkable lipid catabolic competence is present at birth; however, it is unclear how this critical trait is acquired and regulated. In this work, we found that the genes required for milk lipid catabolism are already transcribed before birth in the term fetus (E19.5) and controlled by the peroxisome-proliferator activated receptor alpha (PPAR) in mouse liver. The developmental activity of PPAR strongly regulates fatty acid oxidation genes. Two days after birth (P2), during milk suckling, PPAR-null mice develop a congenital steatosis and milk protein oxidation is de-repressed to fuel an alternative energy pathway that maintains glucose homeostasis and postnatal growth. Our results demonstrate for the first time, the developmental role of PPAR in regulating the metabolic ability to use maternal milk as fuel in the early days of life.

Publication Title

Glucocorticoid receptor-PPARα axis in fetal mouse liver prepares neonates for milk lipid catabolism.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE112485
Microarray expression data from FVB mice with induced hepatoblastoma (liver tumors)
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Hepatoblastoma (HB) is the most common pediatric liver tumor, and there are no targeted therapies available for children with HB. We have previously developed a murine model of HB which is driven by coactivation of the oncogenes YAP1 and -catenin (CTNNB1) [Tao J, Calvisi D, Ranganathan S, et al. Gastroenterology, 2014 Sep; 147(3): 690701]. We used the Sleeping Beauty transposase system combined with hydrodynamic tail vein injection to deliver plasmids containing mutant activated forms of YAP1 (YAP S127A) and -catenin (N90 -catenin) to a small number of pericentral hepatocytes. We have shown that these few transformed hepatocytes proliferate and dedifferentiate, eventually forming histologically heterogeneous tumors that resemble various subtypes of human HB (which is also highly heterogeneous), including areas of well-differentiated fetal, crowded fetal, embryonal, and blastemal HB. Our goal was to investigate how coactivation of YAP1 and -catenin drive the dedifferentiation of hepatocytes into hepatoblast-like tumor cells over time, leading to HB tumors. In order to measure changes in gene expression during tumorigenesis in our model, we used an Affymetrix microarray to analyze isolated RNA from wild type FVB mouse livers, mouse HB tumor tissue, and non-tumor liver tissue adjacent to HB tumors.

Publication Title

Hepatocyte-Derived Lipocalin 2 Is a Potential Serum Biomarker Reflecting Tumor Burden in Hepatoblastoma.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP128565
ß2 adrenergic receptor-mediated negative regulation of group 2 innate lymphoid cell responses
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

RNA sequencing of ILC2s sorted from ß2 adrenergic receptor agonist-treated and non-treated mice Overall design: RNAs of ILC2s sorted as KLRG1+CD127+CD90+Lin-CD45+ from ß2 adrenergic receptor agonist-treated and non-treated mice mLNs 4 days post N. brasiliensis infection were analyzed

Publication Title

β<sub>2</sub>-adrenergic receptor-mediated negative regulation of group 2 innate lymphoid cell responses.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon SRP063567
Complementarity and redundancy of IL-22-producing innate lymphoid cells
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Homeostasis of the gut microbiota is pivotal to the survival of the host. Intestinal T cells and Innate Lymphoid cells (ILCs) control the composition of the microbiota and respond to its perturbations. Interleukin 22 (IL-22) plays a pivotal role in the immune control of gut commensal and pathogenic bacteria and is secreted by a heterogeneous population of intestinal T cells, NCR- ILC3 and NCR+ILC3. Expression of NCR by ILC3 is believed to define an irreversible effector ILC3 end-state fate in which these cells are key to control of bacterial infection via their production of IL-22. Here we identify the core transcriptional signature that drives the differentiation of NCR- ILC3 into NCR+ ILC3 and reveal that NCR+ILC3 exhibit more plasticity than originally thought, as NCR+ ILC3 can revert to NCR- ILC3. Contrary to the prevailing understanding of NCR+ ILC3 genesis and function, in vivo analyses of mice conditionally deleted of the key ILC3 genes Stat3, Il22, Tbet and Mcl1 demonstrated that NCR+ ILC3 were not essential for the control of colonic infections in the presence of T cells. However, NCR+ ILC3 were mandatory for homeostasis of the caecum. Our data identify that the interplay of intestinal T cells and ILC3 results in robust complementary fail-safe mechanisms that ensure gut homeostasis. Overall design: Transcriptional profiling of wild-type and T-bet knockout innate lymphoid cells (ILC3) using RNA sequencing

Publication Title

Complementarity and redundancy of IL-22-producing innate lymphoid cells.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE77942
Human alveolar epithelial cells (A549) exposed to cigarette smoke extract
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Human alveolar epithelial cells were exposed to cigarette smoke extract (CSE) for 1, 3 and 5 weeks at 1%, 5% and 10%, and gene expression was evaluated by complete transcriptome microarrays.

Publication Title

Cigarette Smoke Enhances the Expression of Profibrotic Molecules in Alveolar Epithelial Cells.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon SRP102735
Expression profiles of restoration of BAP1 in a BAP1 deficient cell line
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

RNA-seq of UPMM3 with restoration of BAP1 and BAP1 mutant proteins. Cell line UPMM3 contains a frameshift mutation in BAP1. Overall design: RNA-seq of UPMM3 with restoration of BAP1 and BAP1 mutant proteins

Publication Title

GNA11 Q209L Mouse Model Reveals RasGRP3 as an Essential Signaling Node in Uveal Melanoma.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE31409
Lentiviral vector-based insertional mutagenesis identifies new clinically relevant cancer genes involved in the pathogenesis of hepatocellular carcinoma
  • organism-icon Mus musculus
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We devised a novel insertional mutagenesis approach based on lentiviral vectors to induce hepatocellular carcinoma in three mouse models and identified four novel cancer initiating genes. Two genes are the well characterized Braf and Sos1, while the other two are Fign, encoding an AAA ATPase whose functions are poorly understood, and the complex Dlk1-Dio3 imprinted region which has been recently implicated in cancer and stemness. Activation of Fign or Braf and upregulation of the Dlk1-Dio3 imprinted region are functionally interconnected and may altogether control cell transformation, stemness and energy metabolism. Moreover, all the genes identified play a relevant role in human hepatocarcinogenesis as their expression levels and/or transcriptional signatures induced by their deregulation predict a different clinical outcome in hepatocellular carcinoma patients. These series consists of mRNA expression microarray data (The GeneChip Mouse Gene 1.0 ST Array, Affymetrix) from 8 non-tumoral liver and 21 hepatocellular carcinoma induced by insertional mutagenesis.

Publication Title

Lentiviral vector-based insertional mutagenesis identifies genes associated with liver cancer.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact