refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 34 results
Sort by

Filters

Technology

Platform

accession-icon GSE37365
TET2 loss-of-function mutations associate with a DNA hypermethylation signature in diffuse large B-cell lymphoma
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genome-wide profiling identifies a DNA methylation signature that associates with TET2 mutations in diffuse large B-cell lymphoma.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE37363
TET2 loss-of-function mutations associate with a DNA hypermethylation signature in diffuse large B-cell lymphoma (mRNA)
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Global gene expression in TET2 mutant and Wild type patients. We performed an integrated analysis of global DNA methylation and gene expression data to investigate the effects of DNA hypermethylation on gene expression.

Publication Title

Genome-wide profiling identifies a DNA methylation signature that associates with TET2 mutations in diffuse large B-cell lymphoma.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE56065
PRDM11: a novel tumor suppressor
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Loss of PRDM11 promotes MYC-driven lymphomagenesis.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE56063
Expression data from EMyc;Prdm11 WT and EMyc;Prdm11 KO end-stage splenic tumors
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The PR-domain family (PRDMs) encodes transcriptional regulators, several of which are deregulated in cancer. We found that loss of Prdm11 accelerates MYC-driven lymphomagenesis in the E-Myc mouse model.

Publication Title

Loss of PRDM11 promotes MYC-driven lymphomagenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP040577
Effect of PRDM11 depletion in U2932 cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

The PR-domain family e(PRDMs) encodes transcriptional regulators, several of which are deregulated in cancer. We found that loss of Prdm11 accelerates MYC-driven lymphomagenesis in the Eµ-Myc mouse model. Moreover, we show that patients with PRDM11-deficient diffuse large B cell lymphomas (DLBCLs) have poorer overall survival and belong to the non-Germinal Center B cell (GCB)-like subtype. Mechanistically, genome-wide mapping of PRDM11 binding sites coupled with transcriptome sequencing in human DLBCL cells evidenced that PRDM11 associates with transcriptional start sites of target genes and regulates important oncogenes such as FOS and JUN. Hence, we characterize PRDM11 as a novel tumor suppressor controlling the expression of key oncogenes and add new mechanistic insight into B-cell lymphomagenesis. Overall design: RNA-seq performed after knockdown of Prdm11

Publication Title

Loss of PRDM11 promotes MYC-driven lymphomagenesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE15519
Expression and ChIP-seq analyses of embryonic stem cells, extraembryonic endoderm stem cells, and trophoblast stem cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Bivalent histone domains have been proposed to contribute to pluripotency in embryonic stem cells, suggesting an epigenetic mechanism may regulate stem cell behavior in general. Here we compare histone modifications in two other stem cells derived from the blastocyst. We show that extraembryonic stem cells have little repressive lysine 27 trimethylation and few bivalent domains. Thus, bivalent domains are not a common mechanism for maintaining the undifferentiated state in blastocyst-derived stem cells and alternative mechanisms must mediate transcriptional repression in extraembryonic cells. We show that lysine 9 trimethylation, but not DNA methylation, is likely to fulfill this role. Intriguingly, although we do detect bivalent domains in pluripotent cells in the early mouse embryo, the epigenetic status of extraembryonic cells does not entirely reflect their in vitro stem cell counterparts. Therefore, differences in epigenetic regulation between lineage progenitors in vivo and in vitro may arise during selection for self-renewal in vitro.

Publication Title

Distinct histone modifications in stem cell lines and tissue lineages from the early mouse embryo.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP069250
OSKM induce extraembryonic endoderm stem (iXEN) cells in parallel to iPS cells
  • organism-icon Mus musculus
  • sample-icon 34 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

While the reprogramming factors OCT4, SOX2, KLF4, and MYC (OSKM) can reactivate the pluripotency network in terminally differentiated cells, they also regulate expression of non-pluripotency genes in other contexts, such as the mouse primitive endoderm. The primitive endoderm is an extraembryonic lineage established alongside the pluripotent epiblast in the blastocyst, and is the progenitor pool for extraembryonic endoderm stem (XEN) cells. Several studies have shown that endodermal genes are upregulated in fibroblasts undergoing reprogramming, although whether endodermal genes promote or inhibit acquisition of pluripotency is unclear. We show that, in fibroblasts undergoing conventional reprogramming, OSKM-induced expression of endodermal genes leads to formation of induced XEN (iXEN) cells, which possess key properties of blastocyst-derived XEN cells, including morphology, transcription profile, self-renewal, and multipotency. Our data show that iXEN cells arise in parallel to iPS cells, indicating that OSKM are sufficient to drive cells to two distinct fates during reprogramming. Overall design: Sequence-based mRNA transcriptional profiling of three different cell lines (MEF, XEN, iXEN) with multiple biological replicates, under two different growth medium conditions (ESC medium, XEN medium) for XEN and iXEN cells.

Publication Title

OSKM Induce Extraembryonic Endoderm Stem Cells in Parallel to Induced Pluripotent Stem Cells.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE51905
Expression data from differentiated 3T3-L1 pre-adipocytes.
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Stearoyl-CoA desaturase (SCD) is the rate-limiting enzyme catalyzing the conversion of saturated fatty acids palmitate and stearate to monounsaturated fatty acids palmitoleate and oleate. During adipocyte differentiation, SCD expression increases concomitantly with several transcription factors and lipogenic genes.

Publication Title

Inhibition of stearoyl-CoA desaturase-1 in differentiating 3T3-L1 preadipocytes upregulates elongase 6 and downregulates genes affecting triacylglycerol synthesis.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE42220
Gene expression data from differentiated 3T3-L1 preadipocytes treated with Palmitic Acid, Stearic Acid, Palmitoleic Acid, or Oleic Acid
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Saturated fatty acids (SFA) are widely thought to induce inflammation in adipose tissue (AT), while monounsaturated fatty acids (MUFA) are purported to have the opposite effect; however, it is unclear if individual SFA and MUFA behave similarly. Our goal was to examine adipocyte transcriptional networks regulated by individual SFA (palmitic acid, PA; stearic acid, SA) and MUFA (palmitoleic acid, PMA; oleic acid, OA).

Publication Title

Individual saturated and monounsaturated fatty acids trigger distinct transcriptional networks in differentiated 3T3-L1 preadipocytes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP073157
RNA Sequencing Data in differentiating mouse embryonic stem cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

ES cell lines were established from mouse embryos, which were homozygous for the Trim33-flox allele and carried the UbcCreERT2 transgene. Cells were cultured without feeder cells in the presence of LIF and 2i. Embryoid bodies (EBs) were generated using the ATCC protocol on low attachment dishes under differentiating conditions. EBs were induced with Tamoxifen at day 4 and harvested at day 7. Overall design: Investigate differentially expressed genes in control and Trim33-deficient embryoid bodies derived from mouse embryonic stem cells

Publication Title

Trim33 is required for appropriate development of pre-cardiogenic mesoderm.

Sample Metadata Fields

Specimen part, Cell line, Subject, Time

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact