refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 79 results
Sort by

Filters

Technology

Platform

accession-icon GSE32920
Phevalin (aureusimine B) production by Staphylococcus aureus biofilm and impacts on human keratinocyte gene expression
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Staphylococcus aureus produces the cyclic dipeptides tyrvalin and phevalin (aureusimine A and B, respectively).

Publication Title

Phevalin (aureusimine B) production by Staphylococcus aureus biofilm and impacts on human keratinocyte gene expression.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE75359
Microsensor and transcriptome signatures of oxygen depletion in biofilms associated with chronic wounds [biofilm inoculum]
  • organism-icon Pseudomonas aeruginosa pao1
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Pseudomonas aeruginosa Array (paeg1a)

Description

Biofilms have been implicated in delayed wound healing, although the mechanisms by which biofilms impair wound healing are poorly understood. Many species of bacteria produce exotoxins and exoenzymes that may inhibit healing. In addition, oxygen consumption by biofilms, as well as responding leukocytes, may impede wound healing. In this study, we used oxygen microsensors to measure oxygen transects through in vitro-cultured biofilms, biofilms formed in vivo within scabs from a diabetic (db/db) mouse model, and ex vivo human chronic wound specimens. The results show that oxygen levels within mouse scabs had steep gradients that reached minima ranging from 17-72 mmHg on live mice and 6.4-1.1 mmHg on euthanized mice. The oxygen gradients in the mouse scabs were similar to those observed for clinical isolates cultured in vitro and for human ex vivo specimens. No oxygen gradients were observed for heat-killed mouse scabs, suggesting that active metabolism by the viable bacteria and host cells contributed to the reduced oxygen partial pressure of the scabs. To characterize the metabolic activities of the bacteria in the mouse scabs, we performed transcriptomics analyses of Pseudomonas aeruginosa biofilms associated with the db/db mice wounds using Affymetrix microarrays. The results demonstrated that the bacteria expressed genes for metabolic activities associated with cell growth. Interestingly, the transcriptome results indicated that the bacteria within the wounds also experienced oxygen-limitation stress. Among the bacterial genes that were expressed in vivo were genes associated with the Anr-mediated hypoxia-stress response. Other bacterial stress response genes highly expressed in vivo were genes associated with stationary-phase growth, osmotic stress, and RpoH-mediated heat shock stress. Overall, the results support the hypothesis that bacterial biofilms in chronic wounds promote chronicity by contributing to the maintenance of localized low oxygen tensions.

Publication Title

Microsensor and transcriptomic signatures of oxygen depletion in biofilms associated with chronic wounds.

Sample Metadata Fields

Specimen part, Disease, Time

View Samples
accession-icon GSE66269
Microsensor and transcriptome signatures of oxygen depletion in biofilms associated with chronic wounds [wound]
  • organism-icon Pseudomonas aeruginosa pao1
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Pseudomonas aeruginosa Array (paeg1a)

Description

Biofilms have been implicated in delayed wound healing, although the mechanisms by which biofilms impair wound healing are poorly understood. Many species of bacteria produce exotoxins and exoenzymes that may inhibit healing. In addition, oxygen consumption by biofilms, as well as responding leukocytes, may impede wound healing. In this study, we used oxygen microsensors to measure oxygen transects through in vitro-cultured biofilms, biofilms formed in vivo within scabs from a diabetic (db/db) mouse model, and ex vivo human chronic wound specimens. The results show that oxygen levels within mouse scabs had steep gradients that reached minima ranging from 17-72 mmHg on live mice and 6.4-1.1 mmHg on euthanized mice. The oxygen gradients in the mouse scabs were similar to those observed for clinical isolates cultured in vitro and for human ex vivo specimens. No oxygen gradients were observed for heat-killed mouse scabs, suggesting that active metabolism by the viable bacteria and host cells contributed to the reduced oxygen partial pressure of the scabs. To characterize the metabolic activities of the bacteria in the mouse scabs, we performed transcriptomics analyses of Pseudomonas aeruginosa biofilms associated with the db/db mice wounds using Affymetrix microarrays. The results demonstrated that the bacteria expressed genes for metabolic activities associated with cell growth. Interestingly, the transcriptome results indicated that the bacteria within the wounds also experienced oxygen-limitation stress. Among the bacterial genes that were expressed in vivo were genes associated with the Anr-mediated hypoxia-stress response. Other bacterial stress response genes highly expressed in vivo were genes associated with stationary-phase growth, osmotic stress, and RpoH-mediated heat shock stress. Overall, the results support the hypothesis that bacterial biofilms in chronic wounds promote chronicity by contributing to the maintenance of localized low oxygen tensions.

Publication Title

Microsensor and transcriptomic signatures of oxygen depletion in biofilms associated with chronic wounds.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE19400
S. aureus gene expression following AFN-1252 treatment
  • organism-icon Staphylococcus aureus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix S. aureus Genome Array (saureus)

Description

AFN-1252 is an inhibitor of fatty acid biosynthesis. Gene expression profiles were generated by microarray analysis of S. aureus cells following treatment with AFN-1252, an inhibitor of fatty acid synthesis.

Publication Title

Perturbation of Staphylococcus aureus gene expression by the enoyl-acyl carrier protein reductase inhibitor AFN-1252.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13093
Feeding schedule and the circadian clock shape rhythms in hepatic gene expression
  • organism-icon Mus musculus
  • sample-icon 64 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE36582
Expression data from middle-aged and old Drosophila females
  • organism-icon Drosophila melanogaster
  • sample-icon 46 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

The mechanisms underlying natural variation in lifespan and ageing rate remain largely unknown.

Publication Title

Transcriptome analysis of a long-lived natural Drosophila variant: a prominent role of stress- and reproduction-genes in lifespan extension.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE34023
Overexpression of BglJ and LeuO in Escherichia coli K12
  • organism-icon Escherichia coli k-12
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

The only target locus of transcription factor BglJ known to date is the bgl operon, and activation of bgl by BglJ requires RcsB. Transcription factor LeuO is involved in stress responses and known as antagonist of H-NS. To identifiy novel targets of BglJ, we overexpressed BglJ in Escherichia coli K12 and measured differential gene expression by performing DNA microarray analysis. Moreover, to analyze whether all targets of BglJ require RcsB, we overexpressed BglJ in an rcsB deletion background. In addition, we overexpressed LeuO to identifiy targets of LeuO.

Publication Title

RcsB-BglJ activates the Escherichia coli leuO gene, encoding an H-NS antagonist and pleiotropic regulator of virulence determinants.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13060
The effects of temporally restricted feeding on hepatic gene expression
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Temporally restricted feeding is known to impact the circadian clock. This dataset shows the effects of temporally restricted feeding on the hepatic transcriptome.

Publication Title

Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13062
The effects of temporally restricted feeding on hepatic gene expression of Cry1, Cry2 double KO mice
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Restricted feeding impacts the hepatic circadian clock of WT mice. Cry1, Cry2 double KO mice lack a circadian clock and are thus expected to show rhythmical gene expression in the liver. Imposing a temporally restricted feeding schedule on these mice shows how the hepatic circadian clock and rhythmic food intake regulate rhythmic transcription in parallel

Publication Title

Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP093624
C/EBPß deficiency reshapes microglial gene expression
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

CCAAT/enhancer binding protein ß (C/EBPß) is a transcription factor that regulates the expression of important pro-inflammatory genes in microglia. Mice deficient for C/EBPß show protection against excitotoxic and ischemic CNS damage but the involvement of the various C/EBPß expressing cell types in this neuroprotective effect is not solved. Since C/EBPß-deficient microglia show attenuated neurotoxicity in culture we hypothesized that specific C/EBPß deficiency in microglia could be neuroprotective in vivo. In this study we have tested this hypothesis by generating mice with myeloid C/EBPß deficiency. Mice with myeloid C/EBPß deficiency were generated by crossing LysMCre and C/EBPßfl/fl mice . Primary microglial cultures from C/EBPßfl/fl (named here as WT) and LysMCre-C/EBPßfl/fl (named here as KO) mice were treated with lipopolysaccharide ± interferon ? (IFN?) for 6 h and gene expression was analyzed by RNA sequencing. LysMCre-C/EBPßfl/fl mice showed an efficiency of C/EBPß deletion of 100% in cultured microglia. Transcriptomic analysis of C/EBPß-deficient primary microglia revealed C/EBPß-dependent expression of 1068 genes, significantly enriched in inflammatory and innate immune responses GO terms. This study provides new data that support a central role for C/EBPß in the biology of activated microglia. Overall design: LysMCre-C/EBPßfl/fl genotype (12 samples): 4 samples treated with LPS, 4 with LPS +IFNg, and 4 vehicle. C/EBPßfl/fl genotype (9 samples): 3 samples treated with LPS, 3 with LPS +IFNg, and 3 vehicle. Design Case (Treatment LPS or LPS +INF) control (No treatment or vehicle) in LysMCre-C/EBPßfl/fl genotype and in C/EBPßfl/fl genotype

Publication Title

RNA-Seq transcriptomic profiling of primary murine microglia treated with LPS or LPS + IFNγ.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact