refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 234 results
Sort by

Filters

Technology

Platform

accession-icon E-TABM-544
Transcription profiling of yeast mutants to determine gene regulation by sterol and sphingolipid composition
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 31 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

determination of gene regulation by sterol and sphingolipid composition

Publication Title

Functional interactions between sphingolipids and sterols in biological membranes regulating cell physiology.

Sample Metadata Fields

Sex

View Samples
accession-icon SRP049377
RNA-Seq data for five HER2 over-expressed samples with twelve green fluorescent protein control samples using human mammary epithelial cells
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Purpose: The goal was to capture the transcriptional activity due to over-expression of HER2 protein. We profiled this transcriptional activity using two different RNA-Seq alignment and quantification pipelines. We also used these samples to generate a gene expression signature of HER2 pathway activity. Over-expression was validated using Western blots. Illumina RNA-Seq technology was used to capture the downstream transcriptional activity. Reads were 101 base pairs long and single ended. An R open source package “Rsubread” was used to align and quantify the read using UCSC hg19 annotation. The integer-based gene counts were later normalized in FPKM and TPM . Overall design: A profile of gene expression, downstream of ERBB2/HER2 over-expression, was generated in cells derived from breast and used to generate a gene-expression signature reflective of HER2 pathway activation status.

Publication Title

Alternative preprocessing of RNA-Sequencing data in The Cancer Genome Atlas leads to improved analysis results.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE55114
Whole transcriptome analysis of FACS purified somatosensory neuron subtypes and whole dorsal root ganglia tissue
  • organism-icon Mus musculus
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The goal of this study was to analyze global gene expression in specific populations of somatosensory neurons in the periphery, including major, non-overlapping populations that include nociceptors, pruriceptors, and prorioceptors. The mammalian somatosensory nervous system encodes the perception of specific environmental stimuli. The dorsal root ganglion (DRG) contains distinct somatosensory neuron subtypes that innervate diverse peripheral tissues, mediating the detection of thermal, mechanical, proprioceptive, pruriceptive, and nociceptive stimuli. We purified discrete subtypes of mouse DRG somatosensory neurons by flow cytometry using fluorescently labeled mouse lines (SNS-Cre/TdTomato, Parv-Cre/TdTomato) in combination with Isolectin B4-FITC surface staining (IB4). This allowed identification of transcriptional differences between these major populations, revealing enrichment of voltage-gated ion channels, TRP channels, G-protein coupled receptors, transcription factors, and other functionally important classes of genes within specific somatosensory neuron subsets.

Publication Title

Transcriptional profiling at whole population and single cell levels reveals somatosensory neuron molecular diversity.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE39907
Role of TAZ as mediator of Wnt signaling
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Role of TAZ as mediator of Wnt signaling.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE39902
Role of TAZ as mediator of Wnt signaling (MII)
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To investigate the role of TAZ downstream of APC and beta-catenin in mammary epithelial cells cells, we compared the expression profiles of MCF10-T1k (MII) cells transfected with siControl, siAPC, siAPC+siTAZ, sibeta-catenin, or sibeta-catenin+siTAZ.

Publication Title

Role of TAZ as mediator of Wnt signaling.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE39904
Role of TAZ as mediator of Wnt signaling (SW480)
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To investigate the role of TAZ downstream of the abberrant Wnt signaling in CRC cells, we compared the expression profiles of parental SW480 cells (empty vector) transfected with siControl, siTAZ, sibeta-catenin or reconstituted with wild type APC and transfected with siControl

Publication Title

Role of TAZ as mediator of Wnt signaling.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon SRP078840
Opposing macrophage-polarization programs show extensive epigenomic and transcriptional cross-talk [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 44 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The M1 and the M2 macrophage polarization programs (activated by IFN? and IL-4, respectively) lie at the opposite edges of a continuum of activation states but are frequently co-activated during co-infections and in cancer despite controlling divergent functional responses. Whether these two programs are mutually exclusive, how they influence each other, and whether one represents the prevailing response, are all open questions. Co-administration of IFN? and IL-4 exerted complex inhibitory effects over the M1 and M2 programs at the level of both epigenomic and transcriptional changes. Computational data mining and validation analyses revealed the molecular basis of the differential sensitivity of genes and cis-regulatory elements to the antagonistic effects of the opposite stimulus. For instance, while STAT1 and IRF motifs were associated with robust and IL-4-resistant responses to IFN?, their coexistence with binding sites for some auxiliary transcription factors such as AP-1, generated vulnerability to IL-4-mediated inhibition. These data provide a core mechanistic framework for the integration of signals that control macrophage activation and the starting point for understanding macrophage responses in complex environmental conditions Overall design: Analysis of transcriptional and epigenomic changes in mouse macrophages stimulated with different cytokines or their combinations

Publication Title

Opposing macrophage polarization programs show extensive epigenomic and transcriptional cross-talk.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon SRP044854
EGFR and MEK pathway signature RNA-Seq datasets
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

EGFR and MEK pathways were activated alone or in combination in human mammary epithelial cells. We profiled the pathway gene expression signatures using RNA-Seq. Overall design: mRNA was extracted from human mammary epithelial cells overexpressing EGFR gene, MEK gene, or EGFR and MEK genes in combination (or GFP control) for RNA-Seq analysis. Experiment was performed in six replicates per condition.

Publication Title

ASSIGN: context-specific genomic profiling of multiple heterogeneous biological pathways.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE25628
Endometriosis transcription profiling
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Endometriosis is a complex pathological condition in which multiple components are involved in the disease development and clinical outcome. Endometriosis is mainly an inflammatory codition estrogen-dependent, with unknown pathogenesis, that is characterized by dissemination of edometrium tissue in ectopic position (ovary or pelvic peritoneum). Two main theories rise the pathologic onset: the presence of retrograde menstruation and celomic metaplasia in the pelvic peritoneum, that can occur for development defects. Endometriosis is related not only to genetic or immunological changes and to environmental pollution factors, as the endocrine interferents. The disease phenotype results from multiple events (genetics and enviromental), thus it is difficult to find a single gene as causative while is more probable that a gene network/s might involved in the onset and mantainement of the disease state. The peculiarity of endometriosis rely on the tissue speificity manteinance in the ectopic position, where it responds to the hormone stimuli as the tissue in the eutopic position.

Publication Title

Transcriptional profiling of endometriosis tissues identifies genes related to organogenesis defects.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Subject

View Samples
accession-icon GSE66083
Widespread association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2), Illumina HiSeq 2500

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact