In order to understand the consequences of miR-210 blocking on the ischemia response, the transcriptomic changes were investigated by microarray technology in gastrocnemius muscles of ANTI-210 and SCR treated mice, 7 days after ischemia.
Hypoxia-Induced miR-210 Is Necessary for Vascular Regeneration upon Acute Limb Ischemia.
No sample metadata fields
View SamplesThe purpose of this study was to identify gene expression changes associated with congenital lung malformations.
Novel Molecular and Phenotypic Insights into Congenital Lung Malformations.
Sex, Age, Specimen part, Subject
View SamplesProtein synthesis belongs to the most energy consuming processes in the cell. Lowering oxygen tension below normal (hypoxia) causes a rapid inhibition of global mRNA translation due to the decreased availability of energy. Interestingly, subsets of mRNAs pursue active translation under such circumstances. In human fibrosarcoma cells (HT1080) exposed to prolonged hypoxia (36 h, 1% oxygen) we observed that transcripts are either increasingly or decreasingly associated with ribosomes localized at the endoplasmic reticulum (ER). In a global setting it turned out that only 31% of transcripts showing elevated total-RNA levels were also increasingly present at the ER in hypoxia. These genes, regulated by its expression as well as its ER-localization, belong to the gene ontologys hypoxia response, glycolysis and HIF-1 transcription factor network supporting the view of active mRNA translation at the ER during hypoxia. Interestingly, a large group of RNAs was found to be unchanged at the expression level, but translocate to the ER in hypoxia. Among these are transcripts encoding translation factors and >180 ncRNAs. In summary, we provide evidence that protein synthesis is favoured at the ER and, thus, partitioning of the transcriptome between cytoplasmic and ER associated ribosomes mediates adaptation of gene expression in hypoxia.
Hypoxia-induced gene expression results from selective mRNA partitioning to the endoplasmic reticulum.
Specimen part, Cell line
View SamplesWe have previously reported that tyrosol (TYR), one of the main phenols in extra virgin olive oil (EVOO), promotes lifespan extension in the nematode Caenorhabditis elegans, also inducing a stronger resistance to thermal and oxidative stress in this animal model. Although the influence of several longevity-related genes in these effects has been reported by our group, we decided to perform a whole genome DNA-microarray approach in order to identify other genes and molecular pathways further involved in TYR effects on C. elegans longevity. Microarray analysis identified 208 differentially expressed genes (206 overexpressed and 2 underexpressed) when comparing TYR-treated nematodes with non-treated controls. Many of these genes seem linked to processes such as regulation of growth, transcription, reproduction, lipid metabolism and body morphogenesis. Data obtained by microarray was validated by qRT-PCR analysis of selected genes. Our results confirm that several important cellular mechanisms related to longevity are influenced by TYR treatment in this animal model. Moreover, we detected an interesting overlap between the expression pattern elicited by TYR and those induced by other dietary polyphenols known to extend lifespan in C. elegans, such as quercetin and tannic acid.
Gene expression profiling to investigate tyrosol-induced lifespan extension in Caenorhabditis elegans.
Treatment
View SamplesWe used microarray analysis to investigate if keratinocytes excert an immuno-inflammatory response towards streptococcal M1 protein.
Vigilant keratinocytes trigger pathogen-associated molecular pattern signaling in response to streptococcal M1 protein.
Specimen part, Cell line
View SamplesMesoangioblasts are stem/progenitor cells derived from a subset of pericytes expressing alkaline phosphatase. They have been shown to ameliorate muscular dystrophies (currently incurable diseases) in different animal models and are now undergoing clinical experimentation for Duchenne muscular dystrophy. We show here that patients affected by limb-girdle muscular dystrophy 2D (LGMD2D, characterized by -sarcoglycan deficit) have a reduction of this subset of pericytes and hence mesoangioblast could not be derived for cell therapy. Therefore, we reprogrammed LGMD2D fibroblasts and myoblasts to induced pluripotent stem cells (iPSCs) and developed a protocol for the derivation of mesoangioblast-like cells from them. These cells can be expanded and genetically corrected with a muscle-specific lentiviral vector expressing human -sarcoglycan. Upon transplantation into ad hoc generated -sarcoglycan-null immunodeficient mice, they generate myofibers expressing -sarcoglycan. This approach may be useful for muscular dystrophies that show a reduction of resident progenitors and provides evidence of pre-clinical safety and efficacy of disease-specific iPSCs.
Transplantation of genetically corrected human iPSC-derived progenitors in mice with limb-girdle muscular dystrophy.
Sex, Specimen part
View SamplesTumor growth is associated with a profound alteration of myelopoiesis, leading to recruitment of immunosuppressive cells known as myeloid-derived suppressor cells (MDSCs). Immuno-regulatory activity of both tumor-induced and BM-derived MDSCs (by GM-CSF and IL-6 treatment) was entirely dependent on C/EBP transcription factor (TF), a key component of the emergency myelopoiesis triggered by stress and inflammation. We used miR expression analysis to identify miRs which could drive MDSC recruitment/generation/activity by modulating specific TFs and pathway. In particular, we identified a miR signature of 79 miR differentially expressed between not suppressive CD11b+ cells and CD11b+ isolated from tumor mass and spleen of tumor-bearing mice. Moreover on the same samples we profiled gene expression with Affymetrix microarrays to perform an integrated analysis of mirna and gene expression.
miR-142-3p prevents macrophage differentiation during cancer-induced myelopoiesis.
Specimen part, Disease, Disease stage, Cell line
View SamplesTumor progression is accompanied by an altered myelopoiesis that causes the accumulation of cells inhibiting anti-tumor T lymphocytes. We previously reported that immunosuppressive cells can be generated in vitro from bone marrow cells (BM) after four days GM-CSF and IL-6 treatment. Here, we describe that miR-142-3p down-regulation directs macrophage differentiation and determines the acquisition of their immunosuppressive function in cancer. Enforced miR over-expression impaired monocyte to macrophage transition both in vitro and in vivo. Conversely, forced miR down-regulation promoted the generation of immunosuppressive macrophages even during G-CSF-induced granulocytic differentiation. To identify how miR-142-3p regulates MDSC generation and activity, we analyze the gene expression of BM cultures transfected with either CTRL- or miR 142-3p mimic oligo -transfected before four days GM-CSF and IL-6 treatment.
miR-142-3p prevents macrophage differentiation during cancer-induced myelopoiesis.
Specimen part, Treatment
View SamplesAnoxia induces several heat shock proteins and a heat pre-treatment can acclimatize Arabidopsis seedlings to a subsequent anoxic treatment. In this work we analyzed the response of Arabidopsis seedlings to anoxia, heat and a combined heat+anoxia stress. A significant overlapping between the anoxic and heat shock responses has been observed by whole-genome microarray analysis.
The heat-inducible transcription factor HsfA2 enhances anoxia tolerance in Arabidopsis.
Age, Treatment
View SamplesArabidopsis thaliana ecotype Columbia glabra were grown for 4 days in the dark without added sucrose. Samples were subsequently kept for 6h either [1] under aerobic conditions, [2] under anoxia in absence of sucrose or [3] under anoxia in presence of sucrose.
A genome-wide analysis of the effects of sucrose on gene expression in Arabidopsis seedlings under anoxia.
No sample metadata fields
View Samples