refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 2 of 2 results
Sort by

Filters

Technology

Platform

accession-icon GSE19241
A novel S-sulfocysteine synthase essential for chloroplast function in Arabidopsis thaliana
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

In bacteria, the biosynthesis of cysteine is accomplished by two enzymes that are encoged by the cysK and cysM genes. CysM is also able to incorporate thiosulfate to produce S-sulfocysteine. In plant cells, the biosynthesis of cysteine occurs in the cytosol, mitochondria and chloroplasts. Chloroplasts contain two O-acetylserine(thiol)lyase homologs, which are encoded by the OAS-B and CS26 genes. An in vitro enzymatic analysis of the recombinant CS26 protein demonstrated that this isoform possesses S-sulfocysteine synthase activity and lacks O-acetylserine(thiol)lyase activity. In vivo functional analysis of this enzyme in knockout mutants demonstrated that mutation of cs26 suppressed the S-sulfocysteine synthase activity that was detected in wild type; furthermore, the mutants exhibited a growth phenotype, but penetrance depended on the light regime. The cs26 mutant plants also had reductions in chlorophyll content and photosynthetic activity (neither of which were observed in oas-b mutants), as well as elevated glutathione levels. However, cs26 leaves were not able to properly detoxify ROS, which accumulated to high levels under long-day growth conditions. The transcriptional profile of the cs26 mutant revealed that the mutation had a pleiotropic effect on many cellular and metabolic processes. Our finding reveals that S-sulfocysteine and the activity of S-sulfocysteine synthase play an important role in chloroplast function and are essential for light-dependent redox regulation within the chloroplast.

Publication Title

Arabidopsis S-sulfocysteine synthase activity is essential for chloroplast function and long-day light-dependent redox control.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE27077
Actin Cytoskeleton Integrates Auxin and Brassinosteroid Signaling in Plants.
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

We describe a new mutant allele of the ACTIN2 gene with enhanced actin dynamics, displaying a broad array of twisting and bending phenotypes that resemble BR-treated plants. Moreover, auxin transcriptional regulation is enhanced on the mutant background, supporting the idea that shaping actin filaments is sufficient to modulate BR-mediated auxin responsiveness. The actin cytoskeleton thus functions as a scaffold for integration of auxin and BR signaling pathways.

Publication Title

Role of actin cytoskeleton in brassinosteroid signaling and in its integration with the auxin response in plants.

Sample Metadata Fields

No sample metadata fields

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact