refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Build and Download Custom Datasets
refine.bio helps you build ready-to-use datasets with normalized transcriptome data from all of the world’s genetic databases.
Showing 8 of 8 results
Sort by

Filters

Technology

Platform

accession-icon GSE74304
Gene expression data of GBM146 and GBM157 at day0, 7, 30 after serum exposure
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Glioblastoma (GBM) is a lethal brain cancer composed of heterogeneous cellular populations including glioma stem cells (GSCs) and their progeny differentiated non-stem glioma cells (NSGCs). Although accumulating evidence points out the significance of GSCs for tumour initiation and propagation, the roles of NSGCs remain elusive. Here we demonstrate that, when patient-derived GSCs in GBM tumours undergo differentiation with diminished telomerase activity and shortened telomeres, they subsequently become senescent phenotype, thereby secreting angiogenesis-related proteins, including vascular endothelial growth factors. Interestingly, these secreted factors from senescent NSGCs promote proliferation of human umbilical vein endothelial cells and tumorigenic potentials of GSCs in immunocompromised mice. These experimental data are likely clinically-relevant, since immunohistochemistry of both patient tumours of GBM and the patient GSC-derived mouse xenografted tumours detected tumour cells that express a set of markers for the senescence phenotype. Collectively, our data suggest that the inter-cellular signals from senescent NSGCs promote GBM tumour angiogenesis thereby increasing malignant progression of GBM.

Publication Title

Senescence from glioma stem cell differentiation promotes tumor growth.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE60401
Pregnane X receptor knockout mice display aging-dependent wearing of articular cartilage
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Steroid and xenobiotic receptor (SXR) and its murine ortholog pregnane X receptor (PXR) are nuclear receptors that are expressed mainly in the liver and the intestine. They function as xenobiotic sensors by inducing genes involved in detoxification and drug excretion. Recent evidence showed that SXR and PXR are also expressed in bone tissue where they mediate bone metabolism. Here we report that systemic deletion of PXR results in aging-dependent wearing of articular cartilage of knee joints. Histomorphometrical analysis showed remarkable reduction of width and an enlarged gap between femoral and tibial articular cartilage in PXR knockout mice. We hypothesized that genes induced by SXR in chondrocytes have a protective effect on articular cartilage and identified Fam20a (family with sequence similarity 20a) as an SXR-dependent gene induced by the known SXR ligands, rifampicin and vitamin K2. Lastly, we demonstrated the biological significance of Fam20a expression in chondrocytes by evaluating osteoarthritis-related gene expression of primary articular chondrocytes. Consistent with epidemiological findings, our findings indicate that SXR/PXR protects against aging-dependent wearing of articular cartilage and that ligands for SXR/PXR have potential role in preventing osteoarthritis caused by aging.

Publication Title

Pregnane X receptor knockout mice display aging-dependent wearing of articular cartilage.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE9484
Effect of the HF diet and Akt1-mediated muscle growth on gene expression in liver tissue.
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

In contrast to the well-established role of oxidative muscle fibers in regulating fatty acid oxidation and whole body metabolism, little is known that about the function of fast/glycolytic muscle fibers in these processes. Here, we generated a skeletal muscle-specific, conditional transgenic mouse expressing a constitutively-active form of Akt1. Transgene activation led to muscle hypertrophy due to the growth of type IIb muscle fibers, which was accompanied by an increase in strength. These mice were then used to assess the consequence of building fast/glycolytic muscle fibers on adiposity and metabolism. Akt1 transgene induction in obese mice resulted in reductions in body weight and fat mass, a resolution of hepatic steatosis and improved metabolic parameters. These effects were achieved independent of changes in physical activity and levels of food consumption. Akt1-mediated skeletal muscle growth opposed the effects of high fat/sucrose diet on transcript expression patterns in the liver, and increased hepatic fatty acid oxidation and ketone body production. Our findings indicate that an increase in fast/glycolytic muscle mass can result in the regression of obesity and obesity-related metabolic disorders in part through its ability to alter fatty acid metabolism in remote tissues.

Publication Title

Fast/Glycolytic muscle fiber growth reduces fat mass and improves metabolic parameters in obese mice.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon SRP152919
DUSP10 constrains innate IL-33-mediated cytokine production in ST2hi memory-type pathogenic Th2 cells
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500

Description

Memory CD4+ T helper (Th) cells are crucial for acquired immunity and protection from infectious microorganisms, and also drive pathogenesis of chronic inflammatory diseases, such as asthma. ST2hi memory-type Th2 cells have been identified as a pathogenic subpopulation capable of directly inducing eosinophilic airway inflammation. These ST2hi pathogenic Th2 cells produce large amounts of IL-5 upon stimulation via their TCR, but not in response to IL-33. In contrast, IL-33 alone induces cytokine production in ST2+ group 2 innate lymphoid cells (ILC2). We investigated the molecular mechanism that controls the innate function of IL-33-induced cytokine production, and identified a MAPK phosphatase Dusp10, as a key negative regulator of IL-33–induced cytokine production in Th2 cells. We found that Dusp10 is expressed by ST2hi pathogenic Th2 cells but not by ILC2, and Dusp10 expression inhibits IL-33-induced cytokine production by preventing GATA3 activity through inhibition of p38 MAPK phosphorylation. Strikingly, deletion of Dusp10 rendered ST2hi Th2 cells able to directly respond to IL-33 exposure and produce IL-5. Thus, DUSP10 constrains IL-33–induced cytokine production in ST2hi pathogenic Th2 cells by controlling p38-mediated GATA3 function. Overall design: Functions of Dusp10, a family of dual specificity protein phosphatase, are assessed by RNA-seq.

Publication Title

DUSP10 constrains innate IL-33-mediated cytokine production in ST2<sup>hi</sup> memory-type pathogenic Th2 cells.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE111579
Effects of long-term intake of a yogurt fermented with Lactobacillus delbrueckii subsp. bulgaricus 2038 and Streptococcus thermophilus 1131 on mice
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Effects of long-term intake of a yogurt fermented with Lactobacillus delbrueckii subsp. bulgaricus 2038 and Streptococcus thermophilus 1131 on mice.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE111578
Comparison of gene expressions between young and aged mice in the intestine, liver and spleen tissues
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We compared the gene expressions of the intestine, liver and spleen tissues between mice at 4 months of age and mice at 28 months of age. We used microarrays to examine the age-related changes of gene expressions of the jejunum, ileum, distal colon, liver and spleen in mice. Abbreviations used: C, 28-month-old mice; Y, 4-month-old mice.

Publication Title

Effects of long-term intake of a yogurt fermented with Lactobacillus delbrueckii subsp. bulgaricus 2038 and Streptococcus thermophilus 1131 on mice.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE104375
Comparison of gene expressions between LB81 yogurt-intake mice and control mice in the intestine, liver and spleen at 28 months of age
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We performed the long-term administration experiment using a yogurt fermented with Lactobacillus delbrueckii subsp. bulgaricus 2038 and Streptococcus thermophilus 1131 (LB81 yogurt) for 20 months in order to understand the effects of the long-term intake of probiotics on mice. Microarrays were used to compare the gene expressions of the intestine, liver and spleen tissues between control mice and LB81 yogurt-intake mice at 28 months of age.

Publication Title

Effects of long-term intake of a yogurt fermented with Lactobacillus delbrueckii subsp. bulgaricus 2038 and Streptococcus thermophilus 1131 on mice.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE57636
Gene expression profiling of mouse small intestinal myofibroblast after stimulation with homogenate of intestinal eosinophil
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

GeneChip Mouse Gene 2.0 ST Array was used to comprehensively investigate the changes of gene expression of small intestinal myofibroblasts of mice after stimulation with homogenates of intestinal eosinophils in vitro.

Publication Title

Eosinophil depletion suppresses radiation-induced small intestinal fibrosis.

Sample Metadata Fields

No sample metadata fields

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact