refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 29 results
Sort by

Filters

Technology

Platform

accession-icon GSE19796
Expression data from Bmi1-null c-Kit+Sca-1+Lineage marker- (KSL) hematopoietic stem/progenitor cells
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Bmi1 is a component of polycomb repressive complex 1 and its role in the inheritance of the stemness of adult somatic stem cells has been well characterized. Bmi1 maintains the self-renewal capacity of adult stem cells, at least partially, by repressing the Ink4a/Arf locus that encodes a cyclin-dependent kinase inhibitor, p16Ink4a, and a tumor suppressor, p19Arf 14. Deletion of both Ink4a and Arf in Bmi1-deficient mice substantially restored the defective self-renewal capacity of HSCs and neural stem cells.

Publication Title

Poised lineage specification in multipotential hematopoietic stem and progenitor cells by the polycomb protein Bmi1.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE52711
Expression data from murine hematopoietic stem cells isolated from mice treated with control oil or estradiol
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The division rate of hematopoietic stem cells (HSCs) are promoted by estradiol. To identify the mechanism by which estradiol regulates HSCs, we performed gene expresssion profiling of HSCs isolated from mice of both sexes treated with either control vehicle (oil) or estradiol for one week.

Publication Title

Oestrogen increases haematopoietic stem-cell self-renewal in females and during pregnancy.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE18853
Expression data from Fus/TLS-null KSL hematopoietic stem/progenitor cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Fus is the gene for a member of the FET family of RNA-binding proteins often involved in chromosomal translocations to generate oncogenic fusion genes in human cancers. Fus participates in multiple cellular functions, including RNA processing and transport, transcriptional regulation, and genome integrity. We uncovered its critical role in the maintenance of hematopoietic stem cells (HSCs). Fus-/- fetal livers developed normally except for a mild reduction in numbers of colony-forming cells compared to the wild type. The proliferation and differentiation of Fus-/- hematopoietic progenitors were normal in vitro. However, the number of colony-forming cells present in long-term cocultures of Fus-/- hematopoietic progenitors and stromal cells was significantly reduced. Fus-/- HSCs had an impaired long-term repopulating capacity and failed to repopulate in tertiary recipient mice. Fus-/- HSCs were highly susceptible to radiation both in vitro and in vivo and showed retardation of radiation-induced DNA damage repair. These findings define Fus as a novel regulator of HSCs and implicate it in stress-resistance and maintenance of the genomic integrity of HSCs. Therefore, it would be of importance to analyze the gene expression profiles of Fus-knockout hematopoietic stem/progenitor cells to understand its role in HSCs.

Publication Title

FET family proto-oncogene Fus contributes to self-renewal of hematopoietic stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE31086
Expression data from Bmi1-null common myeloid progenitor (CMP)
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Bmi1 is a component of polycomb repressive complex 1 and its role in the inheritance of the stemness of adult somatic stem cells has been well characterized. Bmi1 maintains the self-renewal capacity of adult stem cells, at least partially, by repressing the Ink4a/Arf locus that encodes a cyclin-dependent kinase inhibitor, p16Ink4a, and a tumor suppressor, p19Arf 14. Deletion of both Ink4a and Arf in Bmi1-deficient mice substantially restored the defective self-renewal capacity of HSCs and neural stem cells.

Publication Title

Lethal myelofibrosis induced by Bmi1-deficient hematopoietic cells unveils a tumor suppressor function of the polycomb group genes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE27787
Hematopoietic cells and stem cells
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Forced expression of the histone demethylase Fbxl10 maintains self-renewing hematopoietic stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE27786
Gene expression profile of mouse hematopoietic cells
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Each fraction of mouse hematopoietic cells was purified by cell sorting from bone marrow of 8-week-old C57BL/6 mice, and its gene expression was analyzed.

Publication Title

Forced expression of the histone demethylase Fbxl10 maintains self-renewing hematopoietic stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE27785
Gene expression profile of mouse hematopoietic stem cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Mouse CD34(-)KSL hematopoietic stem cells and CD34(+)KSL multipotent progenitors were purified by cell sorting from bone marrow of 8-week-old C57BL/6 mice, and their gene expression was analyzed.

Publication Title

Forced expression of the histone demethylase Fbxl10 maintains self-renewing hematopoietic stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18830
B1 sox (sox2/3/19a/19b) quadruple knockdown in the zebrafish embryo
  • organism-icon Danio rerio
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

The B1 SOX transcription factors SOX1/2/3/19 have been implicated in various processes of early embryogenesis. However, their regulatory functions in stages from the blastula to early neurula remain largely unknown, primarily because loss-of-function studies have not been informative to date. In our present study, we systematically knocked down the B1 sox genes in zebrafish. Only the quadruple knockdown of the four B1 sox genes sox2/3/19a/19b, which are active in the early embryo, resulted in very severe developmental abnormalities, confirming that the B1 sox genes are functionally redundant. We characterized the sox2/3/19a/19b quadruple knockdown embryos in detail by examining the changes in gene expression through microarray analysis as well as in situ hybridization.

Publication Title

B1 SOX coordinate cell specification with patterning and morphogenesis in the early zebrafish embryo.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE86819
FACS-array profiling in retinal endothelial cells from living mouse retinas without pericyte coverage
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Pericytes confer vascular stability in the retina, and the loss of pericytes can cause the blood-retina barrier breakdown seen in diabetic retinopathy. To identify endothelial-specific genes expressed in pericyte-deprived retinal vessels, we purified genetically labeled endothelial cells from Tie2-GFP transgenic mice treated with neutralizing antibody against PDGFRb (APB5) and performed gene expression profiling using DNA microarray. To find out endothelial-specific genes associated with the loss of pericyte coverage, the comparison of microarray data was carried out between retinal endothelial cells (data from GSE27238) and APB5-treated retinal endothelial cells.

Publication Title

Sustained inflammation after pericyte depletion induces irreversible blood-retina barrier breakdown.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE71696
Influence of bovine virus diarrhoea virus on the transcriptome profile of bovine endometrium in response to bacterial lipopolysaccharide.
  • organism-icon Bos taurus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Bovine Gene 1.1 ST Array (bovgene11st)

Description

Infection with non-cytopathic bovine viral diarrhea virus (ncpBVDV) is associated with uterine disease and infertility. This study investigated the influence of ncpBVDV on immune functions of the bovine endometrium by testing the response to bacterial lipopolysaccharide (LPS) at the level of whole-transcriptomic gene expression. Analysis showed that approximately 30% of the 1,006 genes altered by LPS are involved in immune response. Many innate immune genes that typically respond to LPS were inhibited by ncpBVDV including those involved in pathogen recognition, inflammation, interferon response, chemokines, tissue remodeling, cell migration and cell death/survival. Infection with ncpBVDV can thus compromise immune function and pregnancy recognition thereby potentially predisposing infected cows to postpartum bacterial endometritis and reduced fertility.

Publication Title

Global transcriptomic profiling of bovine endometrial immune response in vitro. I. Effect of lipopolysaccharide on innate immunity.

Sample Metadata Fields

Sex, Treatment

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact