By contrast with mammals, adult zebrafish have a high capacity to regenerate damaged or lost myocardium through proliferation of spared cardiomyocytes. The epicardial sheet covering the heart is activated by injury and aids muscle regeneration through paracrine effects and as a multipotent cell source, and has received recent attention as a target in cardiac repair strategies. While it is recognized that epicardium is required for muscle regeneration and itself has high regenerative potential, the extent of cellular heterogeneity within epicardial tissue is largely unexplored. In this study, we performed transcriptome analysis on dozens of epicardial lineage cells purified from zebrafish harboring a transgenic reporter for the pan-epicardial gene tcf21. Hierarchical clustering analysis suggested the presence of at least three epicardial cell subsets defined by expression signatures. We validated many new pan-epicardial and epicardial markers by alternative expression assays. Additionally, we explored the function of the scaffolding protein and main component of caveolae, caveolin-1 (cav1), which was present in each epicardial subset. In BAC transgenic zebrafish, cav1 regulatory sequences drove strong expression in ostensibly all epicardial cells and in coronary vascular endothelial cells. Moreover, cav1 mutant zebrafish generated by genome editing showed grossly normal heart development and adult cardiac anatomy, but displayed profound defects in injury-induced cardiomyocyte proliferation and heart regeneration. Our study defines a new platform for the discovery of epicardial lineage markers, genetic tools, and mechanisms of heart regeneration. Overall design: Deep sequencing of isolated single epicardial cells
Single epicardial cell transcriptome sequencing identifies Caveolin 1 as an essential factor in zebrafish heart regeneration.
Age, Specimen part, Cell line, Subject
View Samples3 ventricles from E18.5 male mice were pooled for each array. Three arrays per genotype.
ERRgamma directs and maintains the transition to oxidative metabolism in the postnatal heart.
No sample metadata fields
View SamplesTranscriptome analysis of mRNA samples from a cohort of mice with histopathologically diagnosed Undifferentiated Myeloid Leukemia.
Analyzing tumor heterogeneity and driver genes in single myeloid leukemia cells with SBCapSeq.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesMus musculus (house mouse) Myeloid Leukemia RNA-Seq
Analyzing tumor heterogeneity and driver genes in single myeloid leukemia cells with SBCapSeq.
No sample metadata fields
View SamplesIL-4/GFP- enhanced transcript (4Get) reporter mice were infected with 200 PFU of Influenza A virus PR8 strain. At day 3 of infection, mediastinal lymph nodes were harvested and GFP+ cells sorted and separated by their ability to bind a CD1d-tetramer (Tet+ n=133 , Tet- n=109 ). Single-cell RNA-Seq was used to identify subpopulations of IL-4 producing cells. Single-cell transcriptomes were clustered using Seurat and differentially expressed genes within each cluster were used to resolve IL-4+ subpopulations and aid in defining their role in initiating B cell immunity during influenza infection. Overall design: Examine cells involved in accute viral response in the lymph node after influenza infection
Initiation of Antiviral B Cell Immunity Relies on Innate Signals from Spatially Positioned NKT Cells.
Specimen part, Subject
View SamplesWe analyzed the changes in the spinal cord transcriptome after a spinal cord contusion injury and MSC or OEC transplantation. The cells were injected immediately or 7 days after the injury. The mRNA of the spinal cord injured segment was extracted and analyzed by microarray at 2 and 7 days after cell grafting.
Gene expression changes in the injured spinal cord following transplantation of mesenchymal stem cells or olfactory ensheathing cells.
Treatment
View SamplesInterferon is effective at inducing complete remissions in patients with Chronic Myelogenous Leukemia (CML), and evidence supports an immune mechanism. Here we show that the Type I Interferons (alpha and beta) regulate expression of the Interferon consensus sequence binding protein (ICSBP) in bcr-abl transformed cells and as shown previously for ICSBP, induce a vaccine-like immunoprotective effect in a murine model of bcr-abl induced leukemia. We identify the chemokines CCL6 and CCL9 as genes prominently induced by the Type I Interferons and ICSBP, and demonstrate that these immunomodulators are required for the immunoprotective effect of ICSBP expression. Insights into the role of these chemokines in the anti-leukemic response of interferons suggest new strategies for immunotherapy of CML.
ICSBP-mediated immune protection against BCR-ABL-induced leukemia requires the CCL6 and CCL9 chemokines.
No sample metadata fields
View SamplesCirculating tumor cells (CTCs) play a fundamental role in cancer progression. However, in mice, limited blood volume and the rarity of CTCs in the bloodstream preclude longitudinal, in-depth studies of these cells using existing liquid biopsy techniques. Here, we present an optofluidic system that continuously collects fluorescently-labeled CTCs from a genetically-engineered mouse model for several hours per day over multiple days or weeks. The system is based on a microfluidic cell-sorting chip connected serially to an un-anesthetized mouse via an implanted arteriovenous shunt. Pneumatically-controlled microfluidic valves capture CTCs as they flow through the device and CTC-depleted blood is returned back to the mouse via the shunt. To demonstrate the utility of our system, we profile CTCs isolated longitudinally from animals over a four-day treatment with the BET inhibitor JQ1 using single-cell RNA-Seq (scRNA-Seq) and show that our approach eliminates potential biases driven by inter-mouse heterogeneity that can occur when CTCs are collected across different mice. The CTC isolation and sorting technology presented here provides a research tool to help reveal details of how CTCs change over time, allowing studies to credential changes in CTCs as biomarkers of drug response and facilitating future studies to understand the role of CTCs in metastasis. Overall design: Single-cell RNA-Sequencing of CTCs and primary tumors from a murine model of non-small cell-lung cancer
Optofluidic real-time cell sorter for longitudinal CTC studies in mouse models of cancer.
Specimen part, Subject, Time
View SamplesBasilar papillae (i.e.auditory epithelia) were isolated from 4-day-old chickens and sectioned into low, middle, and high frequency segments. RNA was isolated from each segment separately, amplified using a two-cycle approach, biotinylated, and hybridized to Affymetrix chicken whole-genome arrays.
Gene expression gradients along the tonotopic axis of the chicken auditory epithelium.
Specimen part
View SamplesThe present study reports an unbiased analysis of the cytotoxic T cell serine-threonine phosphoproteome using high resolution mass spectrometry. Approximately 2,000 phosphorylations were identified in CTLs of which approximately 450 were controlled by TCR signaling. A significantly overrepresented group of molecules identified in the phosphoproteomic screen were transcription activators, co-repressors and chromatin regulators. A focus on the chromatin regulators revealed that CTLs have high expression of the histone deacetylase HDAC7 but continually phosphorylate and export this transcriptional repressor from the nucleus. HDAC7 dephosphorylation results in its nuclear accumulation and suppressed expression of genes encoding key cytokines, cytokine receptors and adhesion molecules that determine CTL function. The screening of the CTL phosphoproteome thus reveals intrinsic pathways of serine-threonine phosphorylation that target chromatin regulators in CTLs and determine the CTL functional program. We used Affymetrix microarray analysis to explore the molecular basis for the role of HDAC7 in CTLs and the impact of GFP-HDAC7 phosphorylation deficient mutant expression on the CTL transcriptional profile.
Phosphoproteomic analysis reveals an intrinsic pathway for the regulation of histone deacetylase 7 that controls the function of cytotoxic T lymphocytes.
Specimen part
View Samples