refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 124 results
Sort by

Filters

Technology

Platform

accession-icon SRP013290
Shutdown is a component of the Drosophila piRNA biogenesis machinery (RNA-seq)
  • organism-icon Drosophila melanogaster
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina Genome Analyzer II

Description

In animals, the piRNA pathway preserves the integrity of gametic genomes, guarding them against the activity of mobile genetic elements. This innate immune mechanism relies on distinct genomic loci, termed piRNA clusters, to provide a molecular definition of transposons, enabling their discrimination from genes. piRNA clusters give rise to long, single-stranded precursors which are processed into primary piRNAs through an unknown mechanism. These can engage in an adaptive amplification loop, the ping-pong cycle, to optimize the content of small RNA populations via the generation of secondary piRNAs. Many proteins have been ascribed functions in either primary biogenesis or the ping-pong cycle, though for the most part the molecular functions of proteins implicated in these pathways remain obscure. Here, we link shutdown, a gene previously shown to be required for fertility in Drosophila, to the piRNA pathway. Analysis of knockdown phenotypes in both the germline and somatic compartments of the ovary demonstrate important roles for shutdown in both primary biogenesis and the ping-pong cycle. shutdown is a member of the FKBP family of immunophilins. Shu contains domains implicated in peptidyl-prolyl cis-trans isomerase activity and in the binding of HSP90-family chaperones, though the relevance of these domains to piRNA biogenesis is unknown. Overall design: Analysis of mRNA expression in Drosophila OSS cells transfected with GFP dsRNA. One sample and replicate, used to establish the OSS baseline transcriptome in the presence of exogenous RNAi activity.

Publication Title

shutdown is a component of the Drosophila piRNA biogenesis machinery.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP003561
Probing the initiation and effector phases of the somatic piRNA pathway in Drosophila
  • organism-icon Drosophila melanogaster
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

Combining RNAi in cultured cells and analysis of mutant animals, we probed roles of known piRNA pathway components in the initiation and effector phases of transposon silencing. Overall design: total RNA and RNA associated with Piwi was isolated and size-fractionated by PAGE into 19-29nt. These were processed and sequenced on Illumina Genome Analyzer II.

Publication Title

Probing the initiation and effector phases of the somatic piRNA pathway in Drosophila.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP021535
Minotaur is critical for primary piRNA biogenesis [RNA-Seq]
  • organism-icon Drosophila melanogaster
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

Piwi proteins and their associated small RNAs are essential for fertility in animals. This is due, in part, to their roles in guarding germ cell genomes against the activity of mobile genetic elements. piRNA populations direct Piwi proteins to silence transposon targets and as such form a molecular code that discriminates transposons from endogenous genes. Information ultimately carried by piRNAs is encoded within genomic loci, termed piRNA clusters. These give rise to long, single-stranded, primary transcripts that are processed into piRNAs. Despite the biological importance of this pathway, neither the characteristics that define a locus as a source of piRNAs nor the mechanisms that catalyze primary piRNA biogenesis are well understood. We searched an EMS-mutant collection annotated for fertility phenotypes for genes involved in the piRNA pathway. Twenty-seven homozygous-sterile strains showed transposon-silencing defects. One of these, which strongly impacted primary piRNA biogenesis, harbored a causal mutation in CG5508, a member of the Drosophila glycerol-3-phosphate O-acetyltransferase (GPAT) family. These enzymes catalyze the first acylation step on the path to the production of phosphatidic acid (PA). Though this pointed strongly to a function for phospholipid signaling in the piRNA pathway, a mutant form of CG5508, which lacks the GPAT active site, still functions in piRNA biogenesis. We have named this new biogenesis factor Minotaur. Overall design: Examination of transcriptom profile in heterozygous and homozygous CG5508 mutant ovaries

Publication Title

Minotaur is critical for primary piRNA biogenesis.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP021534
Minotaur is critical for primary piRNA biogenesis [smallRNA-Seq]
  • organism-icon Drosophila melanogaster
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

Piwi proteins and their associated small RNAs are essential for fertility in animals. This is due, in part, to their roles in guarding germ cell genomes against the activity of mobile genetic elements. piRNA populations direct Piwi proteins to silence transposon targets and as such form a molecular code that discriminates transposons from endogenous genes. Information ultimately carried by piRNAs is encoded within genomic loci, termed piRNA clusters. These give rise to long, single-stranded, primary transcripts that are processed into piRNAs. Despite the biological importance of this pathway, neither the characteristics that define a locus as a source of piRNAs nor the mechanisms that catalyze primary piRNA biogenesis are well understood. We searched an EMS-mutant collection annotated for fertility phenotypes for genes involved in the piRNA pathway. Twenty-seven homozygous-sterile strains showed transposon-silencing defects. One of these, which strongly impacted primary piRNA biogenesis, harbored a causal mutation in CG5508, a member of the Drosophila glycerol-3-phosphate O-acetyltransferase (GPAT) family. These enzymes catalyze the first acylation step on the path to the production of phosphatidic acid (PA). Though this pointed strongly to a function for phospholipid signaling in the piRNA pathway, a mutant form of CG5508, which lacks the GPAT active site, still functions in piRNA biogenesis. We have named this new biogenesis factor Minotaur. Overall design: Examination of small RNA profile in heterozygous and homozygous CG5508 mutant ovaries

Publication Title

Minotaur is critical for primary piRNA biogenesis.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE10749
Response of Arabidopsis cell culture to cyclopentenone oxylipins
  • organism-icon Arabidopsis thaliana
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10732
Identification of TGA-regulated genes in response to phytoprostane A1 and OPDA
  • organism-icon Arabidopsis thaliana
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

12-oxo-phytodienoic acid (OPDA) and phytoprostane A1 (PPA1) are cyclopentenone oxylipins that are formed via the enzymatic

Publication Title

General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10719
Response of Arabidopsis cell culture to phytoprostane A1
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

12-Oxo-phytodienoic acid (OPDA) and several phytoprostanes are structurally related cyclopentenone oxylipins that can be formed via the enzymatic jasmonate pathway and a non-enzymatic, free radical-catalyzed pathway, respectively. To elucidate the biological activities of phytoprostanes in comparison to OPDA as well as the metabolism we performed genome-wide expression analysis.

Publication Title

General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP092769
Next Generation Sequencing Facilitates Quantitative Analysis of Wild Type and Pax9-/- Palate shelves Transcriptomes
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Nonsyndromic clefts of the palate and/or lip are common birth defects arising in about 1/700 live births worldwide. They are caused by multiple genetic and environmental factors, can only be corrected surgically and require complex post-operative care that imposes significant burdens on individuals and society. Our understanding of the molecular networks that control palatogenesis has advanced through studies on mouse genetic models of cleft palate. In particular, the transcription factor Pax9 regulates palatogenesis through the Bmp, Fgf and Shh pathways in mice. But there is still much to learn about Pax9's relationship with other signaling pathways in this process. Expression analyses and unbiased gene expression profiling studies offer a molecular explanation for the resolution of palatal defects by showing that Wnt and Eda/Edar-related genes are expressed in normal palatal tissues and that the Wnt and Eda/Edar signaling pathway is downstream of Pax9 in palatogenesis. Overall design: E13.5 mouse embryos palate were micro-dissceted, control and mutant samples were seperated and individually lyzed for the RNA extraction.

Publication Title

Small-molecule Wnt agonists correct cleft palates in <i>Pax9</i> mutant mice <i>in utero</i>.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon SRP116035
Next-Generation Sequencing Facilitates Quantitative Analysis of the Effects of Wnt Agonist Treatments on Palate Formation
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina HiSeq 2500

Description

Nonsyndromic clefts of the palate and/or lip are common birth defects arising in about 1/700 live births worldwide. They are caused by multiple genetic and environmental factors, can only be corrected surgically and require complex post-operative care that imposes significant burdens on individuals and society. Our understanding of the molecular networks that control palatogenesis has advanced through studies on mouse genetic models of cleft palate. In particular, the transcription factor Pax9 regulates palatogenesis through the Bmp, Fgf and Shh pathways in mice. But there is still much to learn about Pax9''s relationship with other signaling pathways in this process. Here we show alterations of Wnt expression and decreased Wnt activity in Pax9-/- palatal shelves are a likely result of Pax9''s ability to directly bind and repress the promoters of Dkk1 and Dkk2, proteins that antagonize Wnt signaling. We exploited this relationship by delivering small-molecule Dkk inhibitors into the tail-veins of pregnant Pax9+/- females from E10.5 to E14.5. Such therapies restored Wnt signaling, promoted cell proliferation, bone formation and fusion of palatal shelves in Pax9-/- embryos. These data uncover a connection between the roles of Pax9 and Wnt genes in palatogenesis and offer a new approach for treating human cleft palates. Overall design: E14 embryos of Pax9-/- and control littermates with or without WAY-262611 treatment, mouse embryos palate were micro-dissected, control and mutant samples were separated and individually lysed for the RNA extraction.

Publication Title

Small-molecule Wnt agonists correct cleft palates in <i>Pax9</i> mutant mice <i>in utero</i>.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE16200
Loss of Syk in normal breast cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Loss of Syk in normal breast cells in vivo and in vitro: gene expression and phenotypic switch to stem-cell like with induction of invadopodia

Publication Title

Tumor suppressor function of Syk in human MCF10A in vitro and normal mouse mammary epithelium in vivo.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact