refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 491 results
Sort by

Filters

Technology

Platform

accession-icon GSE56583
Effects of vitamin D supplementation on alveolar macrophage gene expression
  • organism-icon Homo sapiens
  • sample-icon 43 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

The objective of the overall study was to determine the effects of oral vitamin D supplementation on alveolar macrophages from human subjects. In this substudy, subjects treated with vitamin D (intervention group) in paired analysis had small, but significant effects on immune-related differential gene expression pre versus post supplementation.

Publication Title

Effects of vitamin D supplementation on alveolar macrophage gene expression: preliminary results of a randomized, controlled trial.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE27002
Chronic Cigarette Smoke Exposure Results in Coordinated Methylation and Gene Expression Changes in Human Alveolar Macrophages
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Cigarette smoking is the leading cause of emphysema in the United States. Alveolar macrophages play a critical role in the inflammation-mediated remodeling of the lung parenchyma in emphysema. However, the exact gene pathways and the role of DNA methylation in moderating this pathological transformation are not known. In order to more exactly understand this process, we compared genome-wide expression and methylation signatures of alveolar macrophages isolated from heavy smokers with those isolated from non-smoking controls. We found enrichment of differential methylation in genes from immune system and inflammatory pathways as determined by standard pathway analysis. Consistent with recent findings, significant methylation changes were particularly enriched in the areas flanking CpG islands (CpG shores). Analysis of matching gene expression data demonstrated a parallel enrichment for changes in immune system and inflammatory pathways. We conclude that alveolar macrophages from the lungs of smokers demonstrate coordinated changes in DNA methylation and gene expression that link to inflammation pathways. We suggest that further studies of DNA methylation in immune and inflammation-related gene expression are needed to understand the pathogenesis of emphysema and other smoking-related diseases.

Publication Title

Coordinated DNA methylation and gene expression changes in smoker alveolar macrophages: specific effects on VEGF receptor 1 expression.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE34517
Cigarette smoking alters mRNA expression in human alveolar macrophages
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Alveolar macrophages from never smokers and active smokers were isolated by bronchoalveolar lavage and gene expression was measured. Chronic cigarette smoke exposure, as occurs in smoker's lungs, leads to significant changes in gene expression. Of note, RNA was isolated immediately following bronchoscopy. Alveolar macrophage levels were >95%.

Publication Title

Cigarette smoking decreases global microRNA expression in human alveolar macrophages.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE64997
Interferon- inhibition of Ebola virus infection
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Interferon-γ Inhibits Ebola Virus Infection.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE64996
Interferon- inhibition of Ebola virus infection [Monocyte-derived macrophage]
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Episodic Ebola virus (EBOV) outbreaks, such as the current one in West Africa, emphasize the critical need for novel antivirals against this highly pathogenic virus. Here, we demonstrate that interferon gamma (IFN) prevents morbidity and mortality associated with EBOV infection when administered to mice either 24 hours prior to or 2 hours following EBOV infection. Microarray studies with IFN-stimulated human macrophages identified novel interferon-stimulated genes (ISGs) that inhibit EBOV infection upon ectopic expression. IFN treatment reduced viral RNA levels in macrophages to a similar degree as cells treated with the protein synthesis inhibitor, cycloheximide, suggesting that IFN treatment inhibits genome replication. As IFN treatment robustly protects mice against EBOV infection, we propose that this FDA-approved drug may serve as a useful prophylactic or therapeutic strategy during EBOV outbreaks, contributing to the currently limited arsenal of filovirus antivirals.

Publication Title

Interferon-γ Inhibits Ebola Virus Infection.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE64995
Interferon- inhibition of Ebola virus infection [Alveolar macrophage]
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Episodic Ebola virus (EBOV) outbreaks, such as the current one in West Africa, emphasize the critical need for novel antivirals against this highly pathogenic virus. Here, we demonstrate that interferon gamma (IFN) prevents morbidity and mortality associated with EBOV infection when administered to mice either 24 hours prior to or 2 hours following EBOV infection. Microarray studies with IFN-stimulated human macrophages identified novel interferon-stimulated genes (ISGs) that inhibit EBOV infection upon ectopic expression. IFN treatment reduced viral RNA levels in macrophages to a similar degree as cells treated with the protein synthesis inhibitor, cycloheximide, suggesting that IFN treatment inhibits genome replication. As IFN treatment robustly protects mice against EBOV infection, we propose that this FDA-approved drug may serve as a useful prophylactic or therapeutic strategy during EBOV outbreaks, contributing to the currently limited arsenal of filovirus antivirals.

Publication Title

Interferon-γ Inhibits Ebola Virus Infection.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE29751
Genomic Analysis of wig-1 Pathways
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Analysis of wig-1 pathways via suppression of Wig-1 by antisense oligonucleotides

Publication Title

Genomic analysis of wig-1 pathways.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE51130
Using a rhabdomyosarcoma patient-derived xenograft to examine precision medicine approaches and model acquired resistance
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Original patient tumor is directly implanted in mice xenografts. Tumor is propagated to multiple mice for conduct of 6 arm treatment trials and control. Therapies are selected based on T0 and F0 genomic profiles.

Publication Title

Using a rhabdomyosarcoma patient-derived xenograft to examine precision medicine approaches and model acquired resistance.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP137054
Gene expression profiling of Smad2/3 cKO mice
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer

Description

Uterine double conditional inactivation of Smad2 and Smad3 in mice results in endometrial dysregulation, infertility, and uterine cancer. Smad2/3 cKO mice demonstrate abnormal expression of genes involved in inflammation, cell-cycle checkpoint, migration, steroid biosynthesis, and SMAD1/5-driven genes. We performed RNA-sequencing to identify the gene expression differences between the uterine epithelium of control and Smad2/3 cKO. To control for estrous cycle variations, the uterine epithelium was collected from mice at 0.5 dpc. Global gene expression profiles of Smad2/3 cKO versus control mice was analyzed. Our RNA sequencing analysis was performed at 6 weeks of life and already showed significant differences in migratory (Agr2,Slit2) and inflammatory (Ccl20, Crispld2) markers between Smad2/3 cKO and control mice. Overall design: Two group comparison: uterine epithelium of control and Smad2/3 cKO mice. We generated a conditional knockout of Smad2/3 in the uterus and demonstrated that Smad2/3 plays a critical role in the endometrium, with disruption resulting in pubertal-onset uterine hyperplasia and ultimately fatal uterine cancer.

Publication Title

Uterine double-conditional inactivation of <i>Smad2</i> and <i>Smad3</i> in mice causes endometrial dysregulation, infertility, and uterine cancer.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE87483
Dnmt3a restrains mast cell inflammatory responses
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

By utilizing mast cells lacking Dnmt3a, we found that this enzyme is involved in restraining mast cell responses to stimuli, both in vitro and in vivo.

Publication Title

&lt;i&gt;Dnmt3a&lt;/i&gt; restrains mast cell inflammatory responses.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact