refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Build and Download Custom Datasets
refine.bio helps you build ready-to-use datasets with normalized transcriptome data from all of the world’s genetic databases.
Showing
of 225 results
Sort by

Filters

Technology

Platform

accession-icon GSE46405
Olig1 is a Smad cofactor involved in cell motility induced by transforming growth factor-b
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Transforming growth factor (TGF)- plays crucial roles in embryonic development and adult tissue homeostasis by eliciting various cellular responses in target cells. TGF- signaling is principally mediated through receptor-activated Smad proteins, which regulate expression of target genes in cooperation with other DNA-binding transcriptionfactors (Smad cofactors). In this study, we found that the basic helix-loop-helix transcription factor Olig1 is a Smad cofactor involved in TGF-b-induced cell motility. Knockdown of Olig1 attenuated TGF--induced cell motility in chamber migration and wound healing assays. In contrast, Olig1 knockdown had no effect on bone morphogenetic protein-induced cell motility, TGF--induced cytostasis or epithelial-mesenchymal transition. Furthermore, we observed that cooperation of Smad2/3 with Olig1 is regulated by a peptidyl-prolyl cis/trans isomerase, Pin1. TGF-b-induced cell motility, induction of Olig1-regulated genes, and physical interaction between Smad2/3 and Olig1 were all inhibited after knockdown of Pin1, indicating a novel mode of regulation of Smad signaling. We also found that Olig1 interacts with the L3 loop of Smad3. Using a synthetic peptide corresponding to the L3 loop of Smad3, we succeeded in selectively inhibiting TGF-b-induced cell motility. These findings may lead to a new strategy for selective regulation of TGF-b-induced cellular responses.

Publication Title

Oligodendrocyte transcription factor 1 (Olig1) is a Smad cofactor involved in cell motility induced by transforming growth factor-β.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE106091
Genes regulated by TTF-1 in small cell lung cancer cell lines
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To investigate genes possibly regulated by TTF-1 in small cell lung cancer cell lines, we compared gene expression profiles of NCI-H209 and Lu139 cell lines electroporated with control and TTF-1 siRNAs.

Publication Title

An integrative transcriptome analysis reveals a functional role for thyroid transcription factor-1 in small cell lung cancer.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE55034
DNA methylation and gene expression analysis during myogenic differentiation
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

DNA methylation has been considered to play an important role during myogenic differentiation. In terminal differentiation of myoblasts, chronological alteration of DNA methylation status was poorly understood. Using Infinium HumanMethylation450 BeadChips, we validated genome wide DNA methylation profiles of human myoblast differentiation models. To investigate correlation between DNA methylation and gene expression, we also assessed gene expression of myoblasts with GeneChip Human Genome U133 Plus 2.0 array.

Publication Title

DNA methylation analysis of human myoblasts during in vitro myogenic differentiation: de novo methylation of promoters of muscle-related genes and its involvement in transcriptional down-regulation.

Sample Metadata Fields

Sex, Age, Race

View Samples
accession-icon GSE12693
Hepatic gene expression profile of mice exposed to social stress
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Social stress is well known to be involved in the occurrence and exacerbation of mental illness, and also various life-style related diseases such as hyperinsulinemia, hyperglycemia, cardiovascular diseases and cancer. However, there is little information on tissue-specific gene expression in response to social stress, which reflects our daily life. Liver is one of the most important organs, owing to its biological functions such as energy metabolic homeostasis, metabolization and detoxification of endo- and exogenous substances. In order to elucidate the mechanism underlying response to social stress in the liver, we investigated hepatic gene expression in mice exposed to isolation stress using DNA microarray. Male BALB/c mice (4 weeks old) were housed 5 per cage for 10 days acclimatization. Then mice were exposed to isolation stress for 30 days. After stress treatment, the mouse liver RNA was subjected to DNA microarray analysis. Taking the false discovery rate into account, isolation stress altered expression of 420 genes. Moreover, Gene Ontology analysis of these differentially expressed genes indicated that isolation stress remarkably down-regulated lipid metabolism-related pathway through peroxisome proliferator-activated receptor-alpha (PPARalpha), while lipid biosynthesis pathway regulated by sterol regulatory element binding factor-1 (SREBF-1), Golgi vesicle transport and secretory pathway-related genes were significantly up-regulated. These results suggested that isolation for 30 days, mild and consecutive social stress, not only regulate the systems for lipid metabolism but also cause the endoplasmic reticulum stress in mouse liver.

Publication Title

Isolation stress for 30 days alters hepatic gene expression profiles, especially with reference to lipid metabolism in mice.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon SRP127964
Transcriptome analysis of VMRC-LCD cells following ASCL1 knockdown
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

ASCL1 is a master transcription factor for neuroendocrine differentiation. RNA-sequencing analysis on VMRC-LCD cells following ASCL1 knockdown revealed a subset of genes possibly regulated by ASCL1. Overall design: VMRC-LCD cells were transfected with siRNAs for ASCL1, and RNA-sequencing was performed using Illumina HiSeq.

Publication Title

An Integrative Analysis of Transcriptome and Epigenome Features of ASCL1-Positive Lung Adenocarcinomas.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP064305
Genes regulated by TAZ in a lung fibroblast cell line
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIonTorrentProton

Description

To investigate the roles of TAZ in lung fibroblasts, we compared the expression profiles of a lung fibroblast cell line, HFL-1, transfected with control siRNA and siTAZ. Overall design: We collected RNA from HFL-1 cells transfected with control siRNA and siTAZ. Two kinds of TAZ siRNAs (siTAZ #1 and siTAZ #2) were used. Two biological replicates (rep1 and rep2) were used for each condition.

Publication Title

TAZ contributes to pulmonary fibrosis by activating profibrotic functions of lung fibroblasts.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP125388
Transcriptome dynamics at Arabidopsis graft junctions reveal an intertissue recognition mechanism that activates vascular regeneration
  • organism-icon Arabidopsis thaliana
  • sample-icon 81 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

The ability for cut tissues to join together and form a chimeric organism is a remarkable property of many plants, however, grafting is poorly characterized at the molecular level. To better understand this process we monitored genome-wide temporal and spatial gene expression changes in grafted Arabidopsis thaliana hypocotyls. Tissues above and below the graft rapidly developed an asymmetry such that many genes were more highly expressed on one side than the other. This asymmetry correlated with sugar responsive genes and we observed an accumulation of starch above the graft that decreased along with asymmetry once the sugar-transporting vascular tissues reconnected. Despite the initial starvation response below the graft, many genes associated with vascular formation were rapidly activated in grafted tissues but not in cut and separated tissues indicating that a recognition mechanism activated that was independent of functional vascular connections. Auxin which is transported cell-to-cell, had a rapidly elevated response that was symmetric, suggesting that auxin was perceived by the root within hours of tissue attachment to activate the vascular regeneration process. A subset of genes were expressed only in grafted tissues, indicating that wound healing proceeded via different mechanisms depending on the presence or absence of adjoining tissues. Such a recognition process could have broader relevance for tissue regeneration, inter-tissue communication and tissue fusion events. Overall design: We analyzed the poly-adenylated transcriptomes of Arabidopsis thaliana hypocotyle tissue during grafting. Our dataset contains 82 strand-specific samples, whereas each condition is represented by two biological replicates.

Publication Title

Transcriptome dynamics at <i>Arabidopsis</i> graft junctions reveal an intertissue recognition mechanism that activates vascular regeneration.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP102811
Transcriptome analysis of normal human lung fibroblasts (NHLFs) following TBX4 knockdown.
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

TBX4 is a transcription factor unique to lung fibroblasts and is associated with super-enhancer. RNA-sequencing analysis on NHLFs following TBX4 knockdown revealed a broad array of genes possibly regulated by TBX4. Overall design: NHLFs were transfected with siRNAs for TBX4, and RNA-sequencing was performed using Illumina HiSeq.

Publication Title

TBX4 is involved in the super-enhancer-driven transcriptional programs underlying features specific to lung fibroblasts.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE90103
Complementary critical functions of Zfy1 and Zfy2 in mouse spermatogenesis and reproduction.
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The mammalian Y chromosome plays a critical role in spermatogenesis. However, the exact functions of each gene in the Y chromosome have not been completely elucidated, partly owing to difficulties in gene targeting analysis for the Y chromosome. Zfy was first proposed to be a sex determination factor, but its function in spermatogenesis has been recently elucidated. Nevertheless, Zfy gene targeting analysis has not been performed thus far. Here, we adopted the highly efficient CRISPR/Cas9 system to generate individual Zfy1 or Zfy2 knockout (KO) mice, and Zfy1 and Zfy2 double knockout (Zfy1/2-DKO) mice. While individual Zfy1 or Zfy2-KO mice did not show any significant phenotypic alterations in fertility, Zfy1/2-DKO mice were infertile and displayed abnormal sperm morphology, fertilization failure, and early embryonic development failure. Mass spectrometric screening, followed by confirmation with western blot analysis, showed that PLCZ1, PLCD4, PRSS21, and HTT protein expression was significantly deceased in spermatozoa from Zfy1/2-DKO mice compared with those from wild type mice. These results are consistent with the phenotypic changes seen in the double mutant mice. Collectively, our strategy and findings revealed that Zfy1 and Zfy2 have redundant functions in spermatogenesis, facilitating a better understanding of fertilization failure and early embryonic development failure.

Publication Title

Complementary Critical Functions of Zfy1 and Zfy2 in Mouse Spermatogenesis and Reproduction.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE51510
Role of TTF-1/NKX2-1, Smad3 and Smad4 on lung cancer cell lines
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A Smad3 and TTF-1/NKX2-1 complex regulates Smad4-independent gene expression.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact