refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Build and Download Custom Datasets
refine.bio helps you build ready-to-use datasets with normalized transcriptome data from all of the world’s genetic databases.
Showing
of 750 results
Sort by

Filters

Technology

Platform

accession-icon GSE93726
Transcriptome profile of rat adrenal evoked by gonadectomy and testosterone or estradiol replacement
  • organism-icon Rattus norvegicus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 2.1 ST Array (ragene21st)

Description

Sex differences in rat adrenal cortex are manifested as larger adrenal volume of cortex and higher corticosterone secretion by females compared with males. The molecular bases of these sex related differences are poorly understood.

Publication Title

Transcriptome Profile of Rat Adrenal Evoked by Gonadectomy and Testosterone or Estradiol Replacement.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE57015
Hippocampal expression data from FTY720- and vehicle-treated SCID mice following fear consolidation testing
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

FTY720/Fingolimod, an FDA-approved drug for treatment of multiple sclerosis, has beneficial effects in the CNS that are not yet well understood, independent of its effects on immune cell trafficking. Here we show that FTY720 enters the nucleus where it is phosphorylated by sphingosine kinase 2 (SphK2) and nuclear FTY720-P that accumulates there, binds and inhibits class I histone deacetylases (HDACs) enhancing specific histone acetylations. FTY720 is also phosphorylated in mice and accumulates in various brain regions, including hippocampus, inhibits HDACs and enhances histone acetylation and gene expression programs associated with memory and learning leading to improvement of memory impairment independently of its immunosuppressive actions. Our data suggest that sphingosine-1-phosphate and SphK2 play specific roles in memory functions and that FTY720 may be a useful adjuvant therapy to facilitate extinction of aversive memories.

Publication Title

Active, phosphorylated fingolimod inhibits histone deacetylases and facilitates fear extinction memory.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE49028
Fyn-dependent prefrontal cortex gene networks in acute ethanol sensitivity
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Fyn kinase has been implicated in multiple behavioral responses to ethanol and in the regulation of myelin gene expression. Here we tested whether Fyn kinase modulated basal or ethanol-responsive expression of genes regulated by acute ethanol in brain regions of the mesolimbocortical dopamine pathway.

Publication Title

Fyn-dependent gene networks in acute ethanol sensitivity.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE150775
Adropin stimulates proliferation and inhibits adrenocortical steroidogenesis via the TGF-beta mediated pathway in the human adrenal carcinoma (HAC15) cell line.
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

Adropin is a multifunctional peptide hormone encoded by the ENHO (energy homeostasis associated) gene. It plays a role in mechanisms related to increased adiposity, insulin resistance, as well as glucose and lipid metabolism. The low adropin levels are strongly associated with obesity independent insulin resistance. On the other hand, overexpression or exogenous administration of adropin improves glucose homeostasis. The multidirectional, adropin-related effects associated with the regulation of metabolism in humans also appear to be attributable to the effects of this peptide on the activity of various elements of the endocrine system including adrenal cortex. Therefore, the main purpose of the present study was to investigate the effect of adropin on proliferation and secretory activity in the human HAC15 adrenal carcinoma cell line.

Publication Title

Adropin Stimulates Proliferation and Inhibits Adrenocortical Steroidogenesis in the Human Adrenal Carcinoma (HAC15) Cell Line.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE2189
A549 teatement with MGd
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Human lung cancer (A549) cells were treated 50uM of the metal cation-containing chemotherapeutic drug motexafin gadolinium (MGd) for 4, 12, and 24 hrs and expression compared to control cells (treated with 5% mannitol for the same length of time)

Publication Title

Motexafin gadolinium disrupts zinc metabolism in human cancer cell lines.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE143419
Expression data from brain-regions of mice in varying CIE and drinking states
  • organism-icon Mus musculus
  • sample-icon 224 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Persistent changes in brain gene expression are hypothesized to underlie thealtered neural signaling producing abusive consumption in AUD. To identify brain regional gene expression networks contributing to progressive ethanol consumption, we performed microarray and scale-free network analysis of expression responses in a C57BL/6J mouse model utilizing chronic intermittent ethanol by vapor chamber (CIE) in combination with limited access oral ethanol consumption.

Publication Title

Brain regional gene expression network analysis identifies unique interactions between chronic ethanol exposure and consumption.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE6106
Sense-antisense transcript comparison in mouse brain and kidney
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Array (mgu74a)

Description

Comparison of sense (forward probes) and antisense (reverse probes on U74 v1 gene arrays) transcripts in mouse kidney and brain.

Publication Title

Expression profiling of antisense transcripts on DNA arrays.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE72517
Chronic Intermittent Ethanol by vapor chamber gene expression time-course in five brain regions
  • organism-icon Mus musculus
  • sample-icon 233 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Time-Course Analysis of Brain Regional Expression Network Responses to Chronic Intermittent Ethanol and Withdrawal: Implications for Mechanisms Underlying Excessive Ethanol Consumption.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE72514
Chronic Intermittent Ethanol by vapor chamber gene expression time-course in hippocampus [HPC]
  • organism-icon Mus musculus
  • sample-icon 48 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Lasting behavioral and physiological changes such as abusive consumption, dependence, and withdrawal are characteristic features of alcohol use disorders (AUD). Mechanistically, persistent changes in gene expression are hypothesized to contribute to these brain adaptations leading to ethanol toxicity and abuse. Here we employed repeated chronic intermittent ethanol (CIE) exposure by vapor chamber as a mouse model to simulate the cycles of ethanol exposure and withdrawal commonly seen with AUD. This model has previously been shown to induce progressive ethanol consumption in rodents. Brain regional expression networks contributing to CIE-induced behavioral changes were identified by microarray analysis across five brain regions in the mesolimbic dopamine system and extended amygdala with tissue harvested from 0-120 hours following the last cycle of CIE. Weighted Gene Correlated Network Analysis (WGCNA) was used to identify gene networks over-represented for CIE-induced temporal expression changes across brain regions. Differential gene expression analysis of CIE vs. air-treated controls showed that long-lasting gene regulation occurred 5-days after the final cycle of ethanol exposure only in prefrontal cortex (PFC) and hippocampus. In the majority of brain-regions, however, ethanol regulated gene expression changes occurred only immediately following CIE or within the first 8-hours of removal from ethanol.

Publication Title

Time-Course Analysis of Brain Regional Expression Network Responses to Chronic Intermittent Ethanol and Withdrawal: Implications for Mechanisms Underlying Excessive Ethanol Consumption.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE72515
Chronic Intermittent Ethanol by vapor chamber gene expression time-course in central nucleus of amygdala [CEA]
  • organism-icon Mus musculus
  • sample-icon 48 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Lasting behavioral and physiological changes such as abusive consumption, dependence, and withdrawal are characteristic features of alcohol use disorders (AUD). Mechanistically, persistent changes in gene expression are hypothesized to contribute to these brain adaptations leading to ethanol toxicity and abuse. Here we employed repeated chronic intermittent ethanol (CIE) exposure by vapor chamber as a mouse model to simulate the cycles of ethanol exposure and withdrawal commonly seen with AUD. This model has previously been shown to induce progressive ethanol consumption in rodents. Brain regional expression networks contributing to CIE-induced behavioral changes were identified by microarray analysis across five brain regions in the mesolimbic dopamine system and extended amygdala with tissue harvested from 0-120 hours following the last cycle of CIE. Weighted Gene Correlated Network Analysis (WGCNA) was used to identify gene networks over-represented for CIE-induced temporal expression changes across brain regions. Differential gene expression analysis of CIE vs. air-treated controls showed that long-lasting gene regulation occurred 5-days after the final cycle of ethanol exposure only in prefrontal cortex (PFC) and hippocampus. In the majority of brain-regions, however, ethanol regulated gene expression changes occurred only immediately following CIE or within the first 8-hours of removal from ethanol.

Publication Title

Time-Course Analysis of Brain Regional Expression Network Responses to Chronic Intermittent Ethanol and Withdrawal: Implications for Mechanisms Underlying Excessive Ethanol Consumption.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact