refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 302 results
Sort by

Filters

Technology

Platform

accession-icon SRP020645
The genetic framework of the Drosophila piRNA pathway
  • organism-icon Drosophila melanogaster
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx, Illumina HiSeq 2000

Description

The animal piRNA pathway is a small RNA silencing system that acts in gonads and protects the genome against the deleterious influence of transposons. A major bottleneck in the field is the lack of comprehensive knowledge of the factors and molecular processes that constitute this pathway. We conducted an RNAi screen in Drosophila and identified ~50 genes that strongly impact the ovarian somatic piRNA pathway. Many identified genes fall into functional categories that indicate essential roles for mitochondrial metabolism, RNA export, the nuclear pore, transcription elongation and chromatin regulation in the pathway. Follow-up studies on two factors demonstrate the identification of components acting at distinct hierarchical levels of the pathway. Finally, we define CG2183/Gasz as a novel primary piRNA biogenesis factor in somatic and germline cells. Based on the similarities between insect and vertebrate piRNA pathways our results have far-reaching implications for the understanding of this conserved genome defense system. Overall design: Steady-state RNA levels in wild-type ovarian somatic cells (OSC) and RNAi knock-downs of the piRNA pathway components.

Publication Title

The genetic makeup of the Drosophila piRNA pathway.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP007587
Novel piRNA Pathway Components Identified Among the Class of TUDOR Domain Containing Proteins
  • organism-icon Drosophila melanogaster
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

PIWI proteins and their bound piRNAs form the core of a gonad specific small RNA silencing pathway in animals that protects the genome against the deleterious activity of transposable elements. Recent studies linked the piRNA pathway to TUDOR biology, where TUDOR domains of various proteins recognize and bind symmetrically methylated Arginine residues in PIWI proteins. We systematically analyzed the Drosophila TUDOR protein family and identified three previously not characterized TUDOR domain-containing genes (CG4771, CG14303 and CG11133) as essential piRNA pathway members. We characterized CG4771 (Avocado) in detail and demonstrate a critical role for this protein during primary piRNA biogenesis in somatic and germline cells of the ovary. Avocado physically and/or genetically interacts with the primary pathway components Piwi, Armitage, Yb and Zucchini. Avocado also interacts with the Tdrd12 orthologs CG11133 and CG31755, which are essential for primary piRNA biogenesis in the germline and probably functionally replace the related and soma specific factor Yb. Overall design: small RNA libraries were prepared from total RNA isolation of 8 different genotypes

Publication Title

A systematic analysis of Drosophila TUDOR domain-containing proteins identifies Vreteno and the Tdrd12 family as essential primary piRNA pathway factors.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE64248
Quantification of regenerative potential in primary human mammary epithelial cells
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

We present an organoid regeneration assay in which freshly dissociated human mammary epithelial cells from healthy donors are grown in adherent/rigid or floating/compliant collagen I gels. In both conditions, luminal progenitors (CD49f+EpCAM+) form spheres, whereas basal cells (CD49fhiEpCAM-) generate branched ductal structures. However, in compliant but not rigid collagen gels, branching ducts form alveoli at their tips, express basal and luminal markers at correct positions and display contractility, which is required for alveologenesis. Thereby, branched structures generated in compliant collagen gels resemble terminal ductal-lobular units (TDLUs), the functional units of the mammary gland.

Publication Title

Quantification of regenerative potential in primary human mammary epithelial cells.

Sample Metadata Fields

Sex, Specimen part, Disease, Subject

View Samples
accession-icon SRP125977
Transcriptome analysis of PRMT6 knock-out in NT2/D1 cells
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500

Description

Whole transcriptome for PRMT6 knock-out and control NT2/D1 cells with and without ATRA (all-trans retinoic acid) was sequenced. These samples were compared to each other to find differentially regulated genes and PRMT6-dependent transcriptome in pluripotency and differentiating cells. Overall design: Examining of PRMT6-dependent transcriptome in NT2/D1 cells using RNAseq.

Publication Title

Genomic Location of PRMT6-Dependent H3R2 Methylation Is Linked to the Transcriptional Outcome of Associated Genes.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP047363
Comparison of human PRDM12 mutants D31Y and E172D with wildtype fibroblasts
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Fibroblasts from PRDM12 patients and unaffected wildtype relatives were cultured until near confluency. The transcriptional profile of those cells was determined by mRNA sequencing and uncovered differential expression in several known pain and neurodevelopmental genes. Overall design: Transcriptome comparison of human PRDM12 mutant and wildtype fibroblasts

Publication Title

The evolutionarily conserved transcription factor PRDM12 controls sensory neuron development and pain perception.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7781
Impaired heart function in Apelin gene-deficient mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The endogenous peptide Apelin is crucial for maintaining heart function in pressure overload and aging

Publication Title

Impaired heart contractility in Apelin gene-deficient mice associated with aging and pressure overload.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP026382
A miR-155-ruled microRNA hierarchy in dendritic cell maturation and macrophage activation
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1000

Description

MicroRNAs (miRNAs) are small RNAs that play important regulatory roles in many cellular pathways. MiRNAs associate with members of the Argonaute (Ago) protein family and bind to partially complementary sequences on mRNAs and induce translational repression or mRNA decay. MiRNA expression can be controlled by transcription factors and can therefore be cell type- or tissue-specific. Here we have analyzed miRNA expression profiles in murine monocyte-derived dendritic cells (DCs) and macrophages upon stimulation with LPS, LDL, eLDL and oxLDL to identify not only stimuli-specific miRNA, but also to identify a hierarchical miRNA system involving miR-155. For this, miR-155 knockout dendritic cells and macrophages were also sequenced using the same stimuli. Overall design: Sequencing of murine monocyte-derived dendritic cells and macrophages (each wild type and miR-155 knock out cells) matured and stimulated, respectively, by LPS, oxLDL, eLDL or LDL.

Publication Title

A miR-155-dependent microRNA hierarchy in dendritic cell maturation and macrophage activation.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE18607
Type I IFN-signaling following Pneumocystis (PC)-infection and clearance in CD4 T cell-competent mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Type I IFN-signaling suppresses an excessive IFN-{gamma} response and prevents lung damage and chronic inflammation following Pneumocystis (PC)-infection and clearance in CD4 T cell-competent mice.

Publication Title

Type-I IFN signaling suppresses an excessive IFN-gamma response and thus prevents lung damage and chronic inflammation during Pneumocystis (PC) clearance in CD4 T cell-competent mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE37714
Mammalian TRIM71 as repressor of mRNAs that inhibits translation and affects mRNA stability
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The mammalian TRIM-NHL protein TRIM71/LIN-41 is a repressor of mRNA function.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE37713
Expression data from HEK293 Flp-In cells constitutivly expressing FLAG-HA-tagged TRIM71 and that of the parental cell line
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We identify mammalian TRIM71 as repressor of mRNAs that inhibits translation and affects mRNA stability.

Publication Title

The mammalian TRIM-NHL protein TRIM71/LIN-41 is a repressor of mRNA function.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact