refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 212 results
Sort by

Filters

Technology

Platform

accession-icon GSE140945
Mouse transcriptome reveals signatures of protection and pathogenesis in human tuberculosis
  • organism-icon Mus musculus
  • sample-icon 48 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Mouse transcriptome reveals potential signatures of protection and pathogenesis in human tuberculosis.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE140943
Mouse transcriptome reveals potential signatures of protection and pathogenesis in human tuberculosis [blood array]
  • organism-icon Mus musculus
  • sample-icon 26 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Characterisation of blood and lung global transcriptional responses to Mycobacterium tuberculosis infection in distinct mouse models of Tuberculosis

Publication Title

Mouse transcriptome reveals potential signatures of protection and pathogenesis in human tuberculosis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE140944
Mouse transcriptome reveals potential signatures of protection and pathogenesis in human tuberculosis [lung array]
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Characterisation of blood and lung global transcriptional responses to Mycobacterium tuberculosis infection in distinct mouse models of Tuberculosis

Publication Title

Mouse transcriptome reveals potential signatures of protection and pathogenesis in human tuberculosis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP161569
Global transcriptional profiling unveils the interferon network in blood and tissues across different diseases [RNA-seq_blood4_module_testing]
  • organism-icon Mus musculus
  • sample-icon 94 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

We have performed modular analyses to decipher the global transcriptional response and capture a breadth of distinct immune responses in the lungs and blood of mice infected or challenged with a broad spectrum of infectious pathogens, including parasites (Toxoplasma gondii), bacteria (Burkholderia pseudomallei), viruses (Influenza A virus and Respiratory Syncytial virus (RSV)) and fungi (Candida albicans), or allergens (House dust mite (HDM), systemic and intra-nasal challenge). In a distinct set of infectious diseases, we tested the blood modular transcriptional signatures in mice infected with Plasmodium chabaudi chabaudi (malaria), murine cytomegalovirus (MCMV), Listeria monocytogenes and chronic Burkholderia pseudomallei. We also investigated the transcriptional profiles of sorted CD4 T cells (total CD4+, CD4+ CD44 high and CD4+ CD44 low) from lung and blood samples from mice challenged with HDM allergen. Moreover, we used mice deficient in either Ifnar or Ifngr, or both, to reveal the individual roles of each pathway in controlling disease in mice infected with Toxoplasma gondii. Overall design: RNA-seq analysis of blood samples obtained from mice infected with Plasmodium chabaudi chabaudi, murine cytomegalovirus (MCMV), Listeria monocytogenes and chronic Burkholderia pseudomallei.

Publication Title

Transcriptional profiling unveils type I and II interferon networks in blood and tissues across diseases.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP161563
Global transcriptional profiling unveils the interferon network in blood and tissues across different diseases [RNA-seq_HDM_sorted_CD4_Tcells]
  • organism-icon Mus musculus
  • sample-icon 44 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

We have performed modular analyses to decipher the global transcriptional response and capture a breadth of distinct immune responses in the lungs and blood of mice infected or challenged with a broad spectrum of infectious pathogens, including parasites (Toxoplasma gondii), bacteria (Burkholderia pseudomallei), viruses (Influenza A virus and Respiratory Syncytial virus (RSV)) and fungi (Candida albicans), or allergens (House dust mite (HDM), systemic and intra-nasal challenge). In a distinct set of infectious diseases, we tested the blood modular transcriptional signatures in mice infected with Plasmodium chabaudi chabaudi (malaria), murine cytomegalovirus (MCMV), Listeria monocytogenes and chronic Burkholderia pseudomallei. We also investigated the transcriptional profiles of sorted CD4 T cells (total CD4+, CD4+ CD44 high and CD4+ CD44 low) from lung and blood samples from mice challenged with HDM allergen. Moreover, we used mice deficient in either Ifnar or Ifngr, or both, to reveal the individual roles of each pathway in controlling disease in mice infected with Toxoplasma gondii. Overall design: RNA-seq analysis of sorted CD4 T cells (total CD4+, CD4+CD44high and CD4+CD44low) from lung and blood samples obtained from mice challenged systemically with House dust mite (HDM) allergy.

Publication Title

Transcriptional profiling unveils type I and II interferon networks in blood and tissues across diseases.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE86605
Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • organism-icon Arabidopsis thaliana
  • sample-icon 31 Downloadable Samples
  • Technology Badge Icon Arabidopsis Gene 1.1 ST Array (aragene11st)

Description

Brassinosteroids (BRs) are growth-promoting plant hormones that play a role in abiotic stress responses, but molecular modes that enable this activity remain largely unknown. Here we show that BRs participate in the regulation of freezing tolerance. BR signaling-defective mutants of Arabidopsis thaliana were hypersensitive to freezing before and after cold acclimation. The constitutive activation of BR signaling, in contrast, enhanced freezing resistance. Evidence is provided that the BR-controlled basic helixloophelix transcription factor CESTA (CES) can contribute to the constitutive expression of the C-REPEAT/DEHYDRATION-RESPONSIVE ELEMENT BINDING FACTOR (CBF) transcriptional regulators that control cold responsive (COR) gene expression. In addition, CBF-independent classes of BR-regulated COR genes are identified that are regulated in a BR- and CES-dependent manner during cold acclimation. A model is presented in which BRs govern different cold-responsive transcriptional cascades through the posttranslational modification of CES and redundantly acting factors. This contributes to the basal resistance against freezing stress, but also to the further improvement of this resistance through cold acclimation.

Publication Title

Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE14733
Understanding adult human progenitor cells
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Overarching aim is to achieve a greater understanding of the control of progenitor cells within the adult human retina within the normal and diseased retinal microenvironment. Specifically we will assess via our experimental designs: (i) the control of CD133+ retinal cell populations that display mitotic potential and differentiation and

Publication Title

CD133+ adult human retinal cells remain undifferentiated in Leukaemia Inhibitory Factor (LIF).

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE29411
Expression data from human omental and subcutaneous adipose tissue taken from volunteers undergoing bariatric surgery
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Using gene expression to predict differences in the secretome of human omental vs. subcutaneous adipose tissue.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE92428
Expression data from mRNA in complex with EGFR from irradiated human A549 (ATCC CCL185) cells
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

Immunoprecipitation of EGFR from irradiated A549 (ATCC CCL185) cells was performed in order to characterize bound mRNA species with the help of microarray analysis

Publication Title

New roles for nuclear EGFR in regulating the stability and translation of mRNAs associated with VEGF signaling.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE27704
Expression data from Arabidopsis thaliana seedlings with reduced synthesis of 5-aminolevulinic acid
  • organism-icon Arabidopsis thaliana
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

5-aminolevulinic acid (ALA) is the common precursor of all biological synthezised tetrapyrroles. Inhibition of ALA synthesis results in decreased amounts of chlorophylls, heme, siroheme and phytochrome. It was previously shown that 4 out of 5 Arabidopsis mutants uncoupling nuclear gene expression from the physiological state of the chloroplast are affected in plant tetrapyrrole biosynthesis. It is common to all four mutants to show a reduced ALA formation.

Publication Title

Evidence for a Contribution of ALA Synthesis to Plastid-To-Nucleus Signaling.

Sample Metadata Fields

Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact