Expression data from NIH-3T3 cells left uninfected or infected with MCMV for 2, 4 or 6h on total RNA as well as newly transcribed RNA labeled for 1-2, 3-4, and 5-6hpi. For newly transcribed RNA, the isolated RNA was labeled for 1h and separated from total cellular RNA following Trizol RNA preparation and thiol-specific biotinylation. We used microarrays to analyze the effects of MCMV infection in total and newly transcribed RNA.
Real-time transcriptional profiling of cellular and viral gene expression during lytic cytomegalovirus infection.
Disease, Cell line, Time
View SamplesCytomegaloviruses express large amounts of viral miRNAs during lytic infection, yet, they only modestly alter the cellular miRNA profile. The most prominent alteration upon lytic murine cytomegalovirus (MCMV) infection is the rapid degradation of the cellular miR-27a and miR-27b. Here, we report that this regulation is mediated by the <1.7 kb spliced and highly abundant MCMV m169 transcript. Specificity to miR-27a/b is mediated by a single, apparently optimized, miRNA binding site located in its 3''-UTR. This site is easily and efficiently retargeted to other cellular and viral miRNAs by target site replacement. Expression of the 3''-UTR of m169 by an adenoviral vector was sufficient to mediate its function, indicating that no other viral factors are essential in this process. Degradation of miR-27a/b was found to be accompanied by 3''-tailing and -trimming. Despite its dramatic effect on miRNA stability, we found this interaction to be mutual, indicating potential regulation of m169 by miR-27a/b. Most interestingly, three mutant viruses no longer able to target miR-27a/b, either due to miRNA target site disruption or target site replacement, showed significant attenuation in multiple organs as early as 4 days post infection, indicating that degradation of miR-27a/b is important for efficient MCMV replication in vivo. Overall design: Small RNA sequencing from total RNA or Ago2 associated small RNAs extracted from mock- or MCMV-infected NIH-3T3 cells
Degradation of cellular mir-27 by a novel, highly abundant viral transcript is important for efficient virus replication in vivo.
Specimen part, Cell line, Subject
View SamplesTotal, nascent and unlabeled RNA were prepared following 1h of labeling with 100 M 4-thiouridine and 3 replicates analyzed by Affymetrix Gene ST 1.0 arrays
Systematic analysis of viral and cellular microRNA targets in cells latently infected with human gamma-herpesviruses by RISC immunoprecipitation assay.
Cell line
View SamplesRIP-Chip was performed on DG75-eGFP, DG75-10/12, BCBL-1, BL41, BL41 B95.8 and Jijoye using anti-human Ago2 (11A9) antibodies. Anti-BrdU antibodies were used as controls for DG75-eGFP, DG75-10/12 and BCBL-1. Total RNA was used as control for BL41, BL41 B95.8 and Jijoye. Samples were analyzed on Affymetrix Gene ST 1.0 Arrays (2 independent biological replicates / sample)
Systematic analysis of viral and cellular microRNA targets in cells latently infected with human gamma-herpesviruses by RISC immunoprecipitation assay.
No sample metadata fields
View SamplesTo gain insight into the molecular changes during OSCC carcinogenesis, we performed unbiased, whole genome deep sequencing (RNA-seq) using RNA isolated from cultured, human TERT-immortalized, non-tumorigenic OKF6-TERT1R and OSCC SCC-9 cells. Overall design: OKF6-TERT1R cells and SCC-9 cells were plated in 10 cm2 tissue culture plates at the density of 2 × 106 cells/plate and treated with 1 µM RA or vehicle (0.1% ethanol) for 48 hours. Experiment includes 3 independent biological replicates.
Altered histone mark deposition and DNA methylation at homeobox genes in human oral squamous cell carcinoma.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Post-transplant molecularly defined Burkitt lymphomas are frequently MYC-negative and characterized by the 11q-gain/loss pattern.
Sex, Age, Treatment
View SamplesWe performed genomic and transcriptomic analysis of seven cases of molecular Burkitt lymphoma (mBL) developed in immunosuppressed patients who underwent solid organ transplantation. Interestingly, three cases (43%) were MYC-translocation-negative and revealed the 11q-gain/loss aberration recently identified in 3% of mBL developed in immunocompetent hosts.1 Based on array CGH data, minimal gain and loss regions of 11q (MGR/~4Mb and MLR/~13.5Mb, respectively) were defined and integrative genomic and transcriptomic analysis identified 35 differentially expressed genes, when compared with classic BL. All 16 MGR-dysregulated genes were upregulated, including cancer related USP2, CBL and PAFAH1B2. As expected, all 19 MGL-dysregulated genes were downregulated and two of them, TBRG1 and EI24, are potential tumor suppressor genes. Interestingly, the vast majority of dysregulated 11q23-q25 genes are involved in the MYC and TP53 networks. We hypothesize that the 11q-gain/loss aberration represents a molecular variant of t(8q24/MYC) and affects the same pathological pathways as the MYC oncogene.
Post-transplant molecularly defined Burkitt lymphomas are frequently MYC-negative and characterized by the 11q-gain/loss pattern.
Sex, Age, Treatment
View SamplesWe recently found that the endoplasmic reticulum (ER) stress response (ERSR) is activated in surviving cardiac myocytes in a mouse model of in vivo myocardial infarction. ATF6 is an ER stress-activated transcription factor that induces ERSR genes, some of which encode proteins that may protect against ischemic damage. However, few ERSR genes have been identified in the heart, and there have been no gene expression profiling studies of ATF6-inducible genes, in vivo. We previously generated transgenic (TG) mice that express tamoxifen-activated ATF6, ATF6-MER, in the heart; ATF6-MER conferred tamoxifen-dependent ATF6 activation and protection from ischemic damage. To understand of the mechanism of ATF6-mediated cardioprotection, gene expression profiling of ATF6-MER TG mouse hearts was performed. Activated ATF6 changed expression levels of 1,162 genes in the heart; of the 775 ATF6-inducible genes, only 23 are known ERSR genes. One of the genes not expected to be induced by ATF6 is modulatory calcinuerin-interacting protein-1 (MCIP1). MCIP1 is induced in a calcineurin/NFAT-dependent manner during myocardial hypertrophy and it can feedback inhibit cardiomyocyte growth. We found that MCIP1 expression in cultured cardiomyocytes was increased by the prototypical ER stresser, tunicamycin (TM), or by simulated ischemia. Moreover, infecting cardiomyocytes with adenovirus encoding activated ATF6 induced MCIP1 expression and inhibited myocyte growth in response to the alpha 1-adrenergic agonist, phenylephrine. These results suggest that MCIP1 can be induced in the heart by ER stresses, such as ischemia. Moreover, b integrating hypertrophy and ER stress, MCIP-modulated myocyte growth may help rejuvenate nascent ER protein folding, which could contribute to protection from ischemic damage.
Coordination of growth and endoplasmic reticulum stress signaling by regulator of calcineurin 1 (RCAN1), a novel ATF6-inducible gene.
Sex, Age, Specimen part, Treatment
View SamplesAcinar cells make up the majority of all cells in the pancreas, yet the source of new acinar cells during homeostasis remains unknown. Using multicolor lineage-tracing and organoid-formation assays, we identified the presence of a progenitor-like acinar cell subpopulation. These cells have long-term self-renewal capacity, albeit in a unipotent fashion. We further demonstrate that binuclear acinar cells are terminally differentiated acinar cells. Transcriptome analysis of single acinar cells revealed the existence of a minor population of cells expressing progenitor markers. Interestingly, a gain of the identified markers accompanied by a transient gain of proliferation was observed following chemically induced pancreatitis. Altogether, our study identifies a functionally and molecularly distinct acinar subpopulation and thus transforms our understanding of the acinar cell compartment as a pool of equipotent secretory cells. Overall design: The single-cell RNA-seq library preparation protocol was based on the SMART seq2 protocol (Picelli et al., 2014) with following modifications. Acinar cells were isolated as described in the section Acinar Cell Isolation and Culture and resuspended in DPBS without Ca2+ and Mg2+ (PAN-Biotech). Cells were collected in a volume of 0.5 µL and transferred to a reaction tube containing 4 µL of 6 M guanidine-HCl (Sigma-Aldrich), 0.1% (v/v) Triton X-100 (Sigma-Aldrich) and 1% (v/v) 2-mercaptoethanol (?Sigma-Aldrich). The tube was immediately transferred into liquid nitrogen and kept there for the duration of cell collection. Next, 2.2× RNA SPRI beads (Beckman Coulter) were added directly to the lysis buffer and incubated for 5 min at room temperature. The beads were washed twice with 70% ethanol. Air-dried beads were resuspended in a solution containing 2 µL of H20, 1 µL of oligo(dT) primer, and 1 µL of dNTP Mix (primer and nucleotides used as in Picelli et al., 2014). Twenty-four cells contained ERCC Spike-In RNAs (1:10,000; Mix2, Ambion) Mix in addition to primer and nucleotides. Beads were incubated for 3 min at 72°C, and reverse transcription and PCR (19 cycles) were performed as described by Picelli et al. (2014). PCR product was cleaned up using 0.8× DNA SPRI beads (Beckman Coulter), and air-dried beads were resuspended in 15 µL of H2O. The quality of cDNA library was assessed for each cell on a high-sensitivity DNA Bioanalyzer chip. Subsequent steps (tagmentation, amplification, multiplexing) were done as previously described (Llorens-Bobadilla et al., 2015). The DKFZ Genomics and Proteomics Core Facility conducted sequencing on an Illumina HiSeq2000 sequencer (paired-end 100 bp).
Single-Cell Analysis Uncovers Clonal Acinar Cell Heterogeneity in the Adult Pancreas.
Sex, Specimen part, Cell line, Subject
View SamplesTransient expression of two factors, or from Oct4 alone, resulted in efficient generation of human iPSCs. The reprogramming strategy described revealed a potential transcriptional signature for human iPSCs yet retaining the gene expression of donor cells in human reprogrammed cells free of viral and transgene interference.
Transcriptional signature and memory retention of human-induced pluripotent stem cells.
Sex, Specimen part
View Samples