refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Build and Download Custom Datasets
refine.bio helps you build ready-to-use datasets with normalized transcriptome data from all of the world’s genetic databases.
Showing
of 837 results
Sort by

Filters

Technology

Platform

accession-icon GSE8344
Effect PPARb/d knockout in white adipose tissue
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Analysis of white adipose tissue of PPARb/d knockout mice. Data may point towards putative target genes of PPARb/d and thus the function of PPARb/d in white adipose tissue. Datasets were used to identify glycogen synthase 2 as novel PPAR target.

Publication Title

Glycogen synthase 2 is a novel target gene of peroxisome proliferator-activated receptors.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE32912
Expression profiling of attenuated mitochondrial function identifies retrograde signals in Drosophila
  • organism-icon Drosophila melanogaster
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Mitochondria are able to modulate cell state and fate during normal and pathophysiologic conditions through a nuclear mediated mechanism collectively termed as a retrograde response. Our previous studies in Drosophila have clearly established that progress through the cell cycle is precisely regulated by the intrinsic activity of the mitochondrion by specific signaling cascades mounted by the cell. As a means to further our understanding of how mitochondrial energy status affects nuclear control of basic cell decisions we have employed Affymetrix microarray-based transcriptional profiling of Drosophila S2 cells knocked down for the gene encoding subunit Va of the complex IV of the mitochondrial electron transport chain. The profiling data identifies up-regulation of glycolytic genes and metabolic studies confirm this increase in glycolysis. The transcriptional portrait which emerges implicates many signaling systems, including a p53 response, an insulin response, and up-regulation of conserved mitochondrial responses. This rich dataset provides many novel targets for further understanding the mechanism whereby the mitochondrion may direct cellular fate decisions. The data also provides a salient model of the shift of metabolism from a predominately oxidative state towards a predominately aerobic glycolytic state, and therefore provides a model of energy substrate management not unlike that found in cancer.

Publication Title

Expression profiling of attenuated mitochondrial function identifies retrograde signals in Drosophila.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE27127
Exon-array profiling of Heat-shock stress response in HeLa cell line
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

The heat-shock stress response was studied at the level of exons using Affymetrix Exon-array profiling for both sense and anti-sense transcripts. Sense transcript profiling was done as per the protocol of Affymetrix Exon 1.0 ST array and anti-sense transcript array profiling was done using a modified protocol (Xijin Ge et al., BMC Genomics. 2008 Jan 22;9:27).

Publication Title

Heat shock factor binding in Alu repeats expands its involvement in stress through an antisense mechanism.

Sample Metadata Fields

Sex, Specimen part, Cell line

View Samples
accession-icon GSE26776
Transcriptome-wide changes in HeLa cell line investigated in response to Heat-shock stress
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina human-6 v2.0 expression beadchip

Description

The repertoire of transcripts that are differentially regulated in response to Heat-shock were studied using Illumina WG-6 v2.0 BeadChip.

Publication Title

Heat shock factor binding in Alu repeats expands its involvement in stress through an antisense mechanism.

Sample Metadata Fields

Sex, Specimen part, Cell line

View Samples
accession-icon GSE61049
Nervous system developmental genes are altered in fetal hippocampus by ethanol.
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Prenatal alcohol exposure can cause long-lasting changes in functional and genetic programs of the brain, which may underlie behavioral alterations found in FASD.

Publication Title

Ethanol-related alterations in gene expression patterns in the developing murine hippocampus.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE83811
Expression Data from ALDH1+ breast cancer stem cells
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Breast cancer is the most common cancer in women worldwide and metastatic dissemination is the principal factor related to death by this disease. Breast cancer stem cells, are thought to be responsible for metastasis and chemoresistance.. In this study, based on whole transcriptome analysis from putative breast CSCs and reverse-engineering of transcription control networks, we were able to identify two networks associated to this phenotype.

Publication Title

Transcription Factor Networks derived from Breast Cancer Stem Cells control the immune response in the Basal subtype.

Sample Metadata Fields

Age, Disease stage

View Samples
accession-icon GSE54056
Expression data from adult mouse normal and damaged retina from B6 and 129 mouse strains
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Retinal damage causes proliferation of Muller glia, but the degree of proliferation depends on mouse strains. Muller glial proliferation was significantly promoted by the addition of GSK3 inhibitor in 129, but not in B6. We used retinal explant culture as a model for retinal damage which caused preferential photoreceptor death in a few days.

Publication Title

Proliferation potential of Müller glia after retinal damage varies between mouse strains.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE9105
Effect of Acute Physiologic Hyperinsulinemia on Gene Expression in Human Skeletal Muscle in vivo
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

This study was undertaken to test the hypothesis that short term exposure (4 hours) to physiologic hyperinsulinemia in normal, healthy subjects without a family history of diabetes would induce a low grade inflammatory response, independently of glycemic status. We performed euglycemic hyperinsulinemic (80 mU/m2/min) clamps in 12 healthy, insulin sensitive subjects with no family history of diabetes followed by biopsies of the vastus lateralis muscle taken basally and after 30 and 240 minutes of insulin infusion. Gene expression profiles were generated using Affymetrix HG-U133A arrays. No probe sets had significantly altered expression at 30 minutes of the insulin clamp, but 121 probe sets (117 upregulated and 4 downregulated) were significantly altered after 240 minutes. Hyperinsulinemia in normal, healthy human subjects increased the mRNAs for a number of inflammatory genes and transcription factors. Microarray and quantitative RT-PCR revealed the upregulation of chemokine, cc motif, ligand 2 (CCL2), CCL8, thrombomodulin (THBD), ras-related associated with diabetes (RRAD), metallothionein (MT), and serum/glucocorticoid regulated kinase (SGK), and downregulation of CITED2 (a CREB-binding protein-interacting transactivator), a known coactivator of PPAR-alpha. Interestingly, SGK and CITED2 are located at chromosome 6q23, where we previously detected strong linkage to hyperinsulinemia. A control saline infusion performed on 3 normal, healthy subjects without a family history of diabetes demonstrated that the genes altered following the euglycemic-hyperinsulinemic clamp were due to insulin and independent of biopsy removal. This study demonstrates that insulin acutely regulates the expression of genes involved in inflammation and transcription, and identifies several candidate genes/pathways for further investigation.

Publication Title

Effect of acute physiological hyperinsulinemia on gene expression in human skeletal muscle in vivo.

Sample Metadata Fields

Sex, Race

View Samples
accession-icon GSE15248
Biocompatibility and Discovery of the Potential Applications of Magnetite (Fe3O4) Nanoparticles
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina human-6 v2.0 expression beadchip

Description

A Transcriptomics Approach to Study the Biocompatibility and Finding out the Potential Applications of Magnetite (Fe3O4) Nanoparticles

Publication Title

Magnetite (Fe3O4) nanocrystals affect the expression of genes involved in the TGF-beta signalling pathway.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE13603
Dorsal Ventral Pancreatic Bud Comparison
  • organism-icon Xenopus laevis
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Xenopus laevis Genome Array (xenopuslaevis)

Description

During embryogenesis, the pancreas develops from separate dorsal and ventral buds, which fuse to form the mature pancreas. Little is known about the functional differences between these two buds or the relative contribution of cells derived from each portion to the pancreas after fusion. To follow the fate of dorsal or ventral bud derived cells in the pancreas after fusion, we produced chimeric Elas-GFP transgenic/wild type embryos in which either dorsal or ventral pancreatic bud cells expressed GFP. We found that ventral pancreatic cells migrate extensively into the dorsal pancreas after fusion, whereas the converse does not occur. Moreover, we found that annular pancreatic tissue is composed exclusively of ventral pancreas derived cells. To identify ventral pancreas specific genes that may play a role in pancreatic bud fusion, we isolated individual dorsal and ventral pancreatic buds, prior to fusion, from stage 38/39 Xenopus laevis tadpoles and compared their gene expression profiles. Morpholino-mediated knockdown of one of these ventral specific genes, transmembrane 4 superfamily member 3 (tm4sf3), inhibited dorsal-ventral pancreatic bud fusion as well as acinar cell differentiation. Conversely, overexpression of tm4sf3 promoted the development of annular pancreas. Our results are the first to define molecular and behavioral differences between the dorsal and ventral pancreas, and suggest an unexpected role for the ventral pancreas in pancreatic bud fusion.

Publication Title

The tetraspanin Tm4sf3 is localized to the ventral pancreas and regulates fusion of the dorsal and ventral pancreatic buds.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact